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Thwarting Zero-Day Polymorphic Worms With
Network-Level Length-Based Signature Generation

Lanjia Wang, Zhichun Li, Yan Chen, Zhi (Judy) Fu, and Xing Li

Abstract—It is crucial to detect zero-day polymorphic worms
and to generate signatures at network gateways or honeynets so
that we can prevent worms from propagating at their early phase.
However, most existing network-based signatures are specific to
exploit and can be easily evaded. In this paper, we propose gen-
erating vulnerability-driven signatures at network level without
any host-level analysis of worm execution or vulnerable programs.
As the first step, we design a network-based length-based signa-
ture generator (LESG) for the worms exploiting buffer overflow
vulnerabilities1. The signatures generated are intrinsic to buffer
overflows, and are very difficult for attackers to evade. We further
prove the attack resilience bounds even under worst-case attacks
with deliberate noise injection. Moreover, LESG is fast and noise-
tolerant and has efficient signature matching. Evaluation based on
real-world vulnerabilities of various protocols and real network
traffic demonstrates that LESG is promising in achieving these
goals.

Index Terms—length-based signature, polymorphic worm,
worm signature generation, zero-day vulnerability.

I. INTRODUCTION

C OMPUTER worms are serious threats to the Internet,
causing billions of dollars in economic loss. Searching

the network traffic for known patterns, or signatures, is an im-
portant way to defend against worms, implemented in intrusion
detection systems (IDSes) [2], [3]. Since generating signatures
manually is too slow to defend against zero-day self-propa-
gating worms, approaches have been proposed to automate
the process of worm signature generation [4]–[6]. However,
polymorphic worms which change their byte sequences at every
successive infection can disable these schemes.

Recently, some polymorphic worm signature generation
schemes are proposed. Based on their characteristics, the
signatures can be broadly classified into two categories—ex-
ploit-specific signatures and vulnerability-driven signatures.
The former ones capture the features specific to a worm imple-
mentation, thus might not be generic enough and can be evaded
by other exploits. Most of these signatures are content-based,
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1It is reported that more than 75% of vulnerabilities are based on bufferover-
flow [1].

aiming to exploit the residual similarity in the byte sequences of
different polymorphic worm samples [7]–[11]. As mentioned
in [11], there can be worms which have no content-based sig-
nature at all. Furthermore, various attacks have been proposed
to evade the content-based signatures [12]–[16].

Unlike exploit-specific signature, vulnerability-driven signa-
ture captures the characteristics of the vulnerability the worm
exploits, thus, it is inherent to the vulnerability and hard to
evade. However, existing vulnerability-driven schemes are
mostly host-based [17]–[20]. Both network-based approaches
and host-based approaches have pros and cons. Host-based
approaches work on end users’ hosts or honeypots. They can
be more accurate than network-based approaches, since they
have better knowledge of the software (binary, source code,
or even runtime information of the program). However, it is
difficult for host-based systems to achieve a good installation
coverage, since some users might disable them for various
reasons (e.g., high overhead, system exception, confliction
with existing programs, or just uncomfortableness). Honeypots
also face scalability problems. On the contrary, network-based
approaches can have better coverage, protecting all the users
in the enterprise as a whole and thwarting worms fast. How-
ever, they can only see limited information, which makes
complete vulnerability analysis a challenging job. Moreover,
network-based approaches usually need to collect a substantial
amount of worm samples before a reasonable signature can
be generated, and also maintain an unbiased pool of normal
traffic. In summary, we believe the best security practice needs
to combine these two together as two-layer defense. They are
good complement to each other.

Therefore, the goal of this paper is to find a network-based
vulnerability-driven signature generation approach for zero-day
polymorphic worms, which will work at the network level and
possess the high accuracy of vulnerability-driven schemes.
As the first step toward this ambitious goal, we propose
length-based signature generator (called LESG) which gener-
ates length-based signatures which cannot be evaded. That is,
even when the attackers know what the signatures are and how
the signatures are generated, they cannot find an efficient and
effective way to evade the signatures.

Length-based signatures target buffer overflow attacks which
constitute the majority of attacks [1]. The key idea is that in
order to exploit any buffer overflow vulnerability, the length
of certain protocol fields must be long enough to overflow the
buffer. A buffer overflow vulnerability happens when there is a
vulnerable buffer in the server implementation and some part of
the protocol messages can be mapped to the vulnerable buffer.
When an attacker injects an overrun string for the particular field
of the protocol to trigger the buffer overflow, the length of that
field is usually much longer than those of the normal requests.
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Thus we can use the field length to detect the attacks. This is
intrinsic to the buffer overflow, and consequently it is very hard
for worm authors to evade.

Among existing vulnerability-driven signatures, a subset has
been defined as “vulnerability signatures” specifically [19],
[20]. Our length-based signatures might not be so accurate as
them, since length-based signatures are not directly based on
the exact vulnerability analysis and lack many vulnerability
details. But length-based signatures essentially are driven by
vulnerabilities, which determines LESG can be fairly accurate
and hard to evade. The evaluation in Section VIII-I shows that
LESG can handle most (95%) of the buffer overflow vulnera-
bilities.

In addition to being network-based and having high accuracy,
LESG has the following important features.

Noise tolerance. Signature generation systems typically need
a flow classifier to separate potential worm traffic from normal
traffic. However, network-level flow classification techniques
[21]–[24] invariably suffer from false positives that lead to noise
(normal traffic) in the worm traffic pool. Noise is also an issue
for honeynet sensors [4], [9], [25]. For example, attackers may
send legitimate traffic to honeynets to pollute the worm traffic
pool. Our LESG is proved to be noise tolerant, or even better,
attack resilient, i.e., LESG works well with maliciously injected
noise in an attempt to mislead NIDS [12].

Efficient Signature Matching. Since the signatures gen-
erated are to be matched against every flow encountered by
the NIDS/firewall, it is critical to have fast signature matching
algorithms. By investigating more than ten protocols and
buffer overflow vulnerabilities, we find that in most cases,
length-based signature matching can be implemented as regular
expression matching, which is a highly developed technique
and can be done very fast.

In the rest of the paper, we first survey related work in
Section II and discuss the LESG architecture in Section III.
Then we formally define the length-based signature generation
problem in Section IV, propose a generation algorithm toward it
in Section V, and prove the attack resilience bound of LESG in
Section VI. Some practical issues including signature matching
are discussed in Section VII. After that, we evaluate LESG in
Section VIII. Finally, Section IX concludes the paper.

II. RELATED WORK

Early automated worm signature generation efforts include
Honeycomb [4], Autograph [6], and EarlyBird [5], but they do
not work well with polymorphic worms.

The classification of existing work on automated polymor-
phic worm signature generation and LESG is shown in Table I,
depending on whether it is vulnerability-driven or exploit-spe-
cific, and host-based or network-based.

Exploit-specific signatures. We have discussed con-
tent-based schemes in Section I, [7]–[11]. In addition, Nemean
[25] generates connection and session signatures, which can
be misled by deliberate noise injection [12]. Another approach
CFG [26] is based on exploit code structure analysis and also
can be evaded. Furthermore, it is computationally expensive.
In comparison with most recent work in this category, such as
Hamsa [7], LESG has better attack resilience, e.g., it has better
bounds for deliberate noise injection attacks [12].

TABLE I
COMPARISON WITH OTHER POLYMORPHIC WORM SIGNATURE

GENERATION SCHEMES

Vulnerability-driven signatures. In this category, some are
defined as “vulnerability signatures” [19], [20]. Brumley et al.
presented the concept of vulnerability signature in [19]. Vigi-
lante [20] proposed a vulnerability signature which is similar to
the MEP symbolic constraint signatures in [19]. Liang et al. pro-
posed the first host-based scheme to generate length-based sig-
natures [1], [17]. However, the signature generated by COVERS
[17] based on a small number of samples may be too specific
to represent the overall worm population, thus may have high
false negatives. Packet Vaccine [18] further improves the sig-
nature quality by using binary search. These schemes are all
host-based.

Other related work. There are other previous research ef-
forts on network-level detection of buffer overflow exploits. For
example, some aim to detect different components or features of
exploit code ([27]–[31]), some focus on payload-based anomaly
detection ([22], [23]). Although significant progress has been
made, most of these approaches suffer from high false posi-
tives or false negatives under newly developed attacks [31], [32],
or cannot work at high-speed links. Unlike those research ef-
forts, this paper focuses on signature generation for buffer over-
flow attacks, for which we can afford a relatively expensive
process to generate signature but want the signature matching
with low overhead and high accuracy. Another category of re-
lated work is about misleading attacks [12]–[16]. We discuss
them in Section VI-B in detail.

III. ARCHITECTURE OF LESG

As shown in Fig. 1, LESG can be connected to various net-
working devices, such as routers, switches and gateways via a
span (mirror) port or an optical splitter. Most modern switches
are equipped with a span port to which copies of entire packets
in the traffic from a list of ports can be directed.

Similar to the basic framework of Polygraph [8] and Hamsa
[7], we first need to sniff traffic from networks and classify
the traffic as different application level protocols, based on port
numbers or other protocol identifiers. Next, for each protocol,
we filter out known worms and separate the traffic into a suspi-
cious traffic pool and a normal traffic reservoir using an existing
flow classifier [6], [21]–[24].

That existing flow classifier may use various techniques
(such as honeynet [33]–[35], port scan detection [6], [36], byte
frequency detection [22], [23], and other advanced techniques)
to identify suspicious flows. Note that the flow classifiers
can operate at line speed of routers [36]. The scan detection
based flow classifiers first detect hosts scanning a particular port
number, and then classify successful TCP connections from any
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Fig. 1. Deployment of LESG.

Fig. 2. LESG signature generator.

of the scanning hosts as suspicious flows. It is effective against
scanning worms. Meanwhile, the honeynet/honeyfarm based
approach considers any traffic caught in the honeynet/honey-
farm as suspicious flows.

Leveraging the normal traffic selection policy mentioned in
[7], we can create the normal pool. The suspicious pool and the
normal pool are inputted to the signature generator as shown in
Fig. 2. We first specify the protocol semantics and use a pro-
tocol parser to parse each protocol message into a set of fields.
Each field is associated with a type and a length. The field length
information of both the suspicious pool and the normal pool is
given as input to the “LESG core”(signature generation algo-
rithm) module to generate the signatures.

A. Protocol Parsing

As emphasized in [37], protocol parsing is an important step
in any semantic analysis of network traffic, such as network
monitoring, network intrusion detection systems [2], [3], smart
firewalls, etc. Recently, many research efforts [38]–[40] have
been done on the protocol reverse engineering, making the
parsing of close protocols also possible.

We have analyzed six text-based protocols (HTTP, FTP,
SMTP, POP3, IRC, IDENT) and seven binary protocols (DNS,
SNMP, SMB, WINRPC, SUNRPC, NTP, SSL). We find that,
in general, it is much easier and faster to parse the lengths of
the protocol fields than full protocol parsing.

Some recent research, such as BINPAC [37], has studied how
to ease the job of writing a protocol parser. BINPAC actually

Fig. 3. Illustration of DNS PDU.

works as a parser generator. Its input is a script which is a pro-
tocol specification written in BINPAC language. The output is
a parser code for that protocol. Currently, BINPAC is executed
in connection with Bro [3]. With BINPAC, writing a protocol
parser has been greatly simplified. Furthermore, not only can
the available scripts provided by Bro be reused, but also many
people can potentially contribute and produce more reusable
protocol specifications for BINPAC as an open source tool. For
these advantages, we use BINPAC and Bro for packet flow re-
assembling and protocol parsing in our research.

IV. LENGTH-BASED SIGNATURE DEFINITION

AND PROBLEM STATEMENT

In this section, we model each network flow as a field hier-
archy, and present it as a vector of fields. Based on this model,
we formally define the length-based signatures and the length-
based signature generation problem.

A. Field Hierarchies

Each of the network flows usually contains one or more
Protocol Data Units (PDUs), which are the atomic processing
data units that the application sends from one endpoint to
the other. PDUs are normally specified in the protocol stan-
dards/specifications, such as RFCs. A PDU is a sequence of
bytes and can be dissected into multiple fields. Here, a field
means a subsequence of bytes with special semantic meaning
or functionality as specified in the protocol standard. Typically,
a field encodes a variable with a certain data structure, such as
a string, an array etc. Take the DNS protocol as an example.
Fig. 3 shows the format of the DNS PDUs. It has a header and
four other sections—QUESTION, ANSWER, AUTHORITY,
and ADDITIONAL. Each section is further composed of a set
of fields. The QUESTION section contains one or more DNS
queries that are further composed of field QNAME, QTYPE,
and QCLASS. The other three sections contain one or more
Resource Records (RRs), and each RR is composed of six
lower level fields (NAME, TYPE, etc.).

Among all the fields in PDUs, some, e.g., QNAME (denoted
as field ), NAME (field ) and RDATA (field ),
as in Fig. 4, are variable-length fields; others are fixed-length
fields, of which the fixed lengths are defined in the protocol stan-
dard. The continuous fixed-length fields can be combined as one
field, for example, field in Fig. 4 represents the combination
of QTYPE and QCLASS, and field represents the combina-
tion of TYPE, CLASS, TTL, and RDLENGTH.

Authorized licensed use limited to: Northwestern University. Downloaded on May 06,2010 at 19:35:34 UTC from IEEE Xplore.  Restrictions apply. 



56 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 1, FEBRUARY 2010

TABLE II
TABLE OF NOTATIONS

Fig. 4. Abstraction of DNS PDU.

Fig. 5. Hierarchical Structure of DNS PDU.

We make the following observation on such a representation
of PDU. The concatenation of multiple fields may be defined as
another higher-level field with special semantic meanings, and
stored in one buffer in certain server implementation. That is,
if the server has an overflow vulnerability related to this buffer,
it is the instance (i.e., corresponding subsequence of bytes) of
that higher-level field in a flow that can overflow the buffer. For
example, imagine a DNS server stores the entire PDU in a buffer
when receiving a DNS PDU.

With these considerations, we design a hierarchical model to
describe the structure of fields in a PDU. As Fig. 5 shows, we
denote QUESTION section, the concatenation of repeated fields

and , as another field . Similarly, field
, and the highest level field is the entire PDU.

We call the fields which are formed by combining consecutive
fields together compound fields. For the fields which cannot be
further decomposed, we call them simple fields.

In short, we include all possible variable-length fields that
potentially correspond to vulnerable buffers. Such a hierarchy
can be built for every protocol technically.

Suppose there is a total of variable-length fields in the hi-
erarchy constructed for a certain protocol. We use an index set

to denote these fields. For one flow, let
, be the maximum among the lengths of

potentially multiple instances of field , then a vector
is generated uniquely to represent the field

lengths for each variable-length field in this flow. In the rest of
the paper, we refer to variable-length fields simply as fields for
the sake of brevity.

B. Length-Based Signature Definition

Based on the length vector representation of a flow above, we
formally define the concept of a length-based signature in this
section. A signature is a pair , where
is also called the signature field ID, and is the corresponding
signature length for field .

When using the signature to detect the worms, the matching
process is as follows. For a flow , we
compare with . If , flow is labeled as a
worm flow; otherwise it is labeled as normal. More than one
signature corresponding to different fields can possibly be
generated for a given protocol, resulting in a signature set

. A flow will be labeled as a worm if it is
matched by at least one signature in the set.

The length-based signatures are designed for buffer overflow
worms. The signature field should be mapped exactly to a vul-
nerable buffer. Let be the length of the vulnerable buffer,

be the corresponding field ID, we define signature
as the ground truth signature. If multiple server imple-

mentations have vulnerable buffers corresponding to the same
field (the probability of this case should be small), we choose
the minimum buffer length as the ground truth.

C. Length-Based Signature Generation Problem Formulation

If the flow classifier is perfect, all the flows in the suspicious
pool are worm samples. If the worm is a buffer overflow worm,
finding a length-based signature amounts to simply finding the
best field and the field length with minimal false negatives and
minimal false positives. However, in practice, flow classifiers at
the network level are not perfect and always have some false
positives, and therefore, the suspicious pool may contain some
normal flows. On the other hand, due to the large volume of
traffic on the Internet, we assume the noise (worm flows) in
the normal pool is either zero or very limited, and thus it is
negligible.

After filtering known worms, there can be multiple new
worms of a given protocol in the suspicious pool, though
the most common case is a single worm having its out-
break underway in the newly generated suspicious pool.
The output of the signature generation is a signature set

. A flow matched by any signature in this
set will be labelled as a worm flow.

In Table II, we define most of the notations used in the
problem formulation and theorems.

Problem 1: [Noisy Length-Based Signature Generation
(NLBSG)]

Authorized licensed use limited to: Northwestern University. Downloaded on May 06,2010 at 19:35:34 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: THWARTING ZERO-DAY POLYMORPHIC WORMS 57

INPUT: Suspicious traffic pool and normal
traffic pool ; value .
OUTPUT: A set of length-based signatures

such that is minimized
subject to .
Hardness For a buffer overflow worm in the suspicious
pool, in absence of noise, generation of a set of length-based
signatures is a polynomial time problem, since we know the
size of the set is one. However, with noise and multiple worms,
the computational complexity of the problem has significantly
changed.

Theorem 1: NLBSG is NP-Hard
Proof Sketch: The proof is by reduction from Minimum

Union, which is equivalent to Maximum -Intersection [41].

V. SIGNATURE GENERATION ALGORITHM

The protocol parsing step generates (field ID, length) pairs
for all flows in the normal traffic pool and suspicious traffic pool
respectively. Based on that, we design a three-steps algorithm
to generate length-based signatures. Although the problem
NLBSG is NP-Hard in general, for buffer overflow worms, the
algorithm is fast and has fair accuracy even in the worst case
scenarios, which is proved in Section VI. To the best of our
knowledge, this is the first network-based signature generation
approach that has the accuracy bound even with adversaries’
injected noise.

Step-1: Field Filtering select candidate signatures.
Step-2: Signature Length Optimization optimize the signa-
ture length for each field.
Step-3: Signature Pruning find the optimal subset of can-
didate signatures with low false positive rate and false neg-
ative rate.

A. Field Filtering

In this step of the algorithm, we make the first selection on the
fields that could be candidate signatures. The goal is to narrow
down the searching space. Two parameters are set as the input:

and , which indicate the basic requirements on the
false positives and detection coverage.

In the Step-1 algorithm, and denote the flows de-
tected by signature in pools and respectively.

We process each field separately. For every field, the algo-
rithm takes time to find the signature length,
and then takes time to calculate the detection coverage
on . Therefore, the total running time is

. Since is usually far smaller than , the overall
time cost is .

This step makes use of the fact that, for buffer overflow
worms, the true worm samples should have longer lengths on
the vulnerable fields than the normal flows. If the coverage
of true worm samples in the suspicious pool is more than

, and the ground truth signature has no false positive,
we are always able to find a vulnerable field signature, of which
the field ID is the vulnerable field ID (i.e., field ID of ground
truth signature).

B. Signature Length Optimization

The first step has selected candidate signatures to meet the
basic requirements. In the second step, we try to optimize the
length value of each candidate signature. There is often tradeoff
between the detection coverage and false positive rate. We need
a method to compare different lengths to determine which one
is “better.” For the sake of brevity, let denote the false
positive rate (computed with ) of signature and let

denote its coverage on . This step aims to maxi-
mize a score function for each field .
The notion score function is proposed in [7], to determine the
best tradeoff between the false positive and detection coverage.
For example, we need to make a choice between %

% and % %.
In the Step-2 algorithm, , where

, is the length of
each field in a flow . We define .
Signature set generated in Step-1 is the input of this step.

In , if is in the ascending
order, it is obvious that between any two consecutive elements,
namely and , the score is mono-
tonically non-decreasing in . Thus we only need to search
among all the , for the maximum
score, i.e., the total number we need to try is at most . This
search is done by the first loop of Step-2 algorithm.

The result of that search is . If
the length distributions of field in normal flows and in worm
flows are well separated, would be much larger than .
Then in the second loop of Step-2 algorithm, decreases until
the score changes (decreases actually) or reaches the median
of . In Section VI-B, we will discuss the advantage
of performing this loop.

To sort each needs . To search the best
score from to needs at most . In the
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worst case, to find the best signature in the gap between
and , half of the gap needs to be searched. Since , the
total running time is .

is the possible maximum gap among all the fields.

C. Signature Pruning

Still we have a set of candidate signatures. Usually, the more
signatures we use, the more false positives there might be, since
all the signatures are to be matched against flows in the detec-
tion phase. In this step, we will find an optimal subset of the
candidate signatures to be the final signature set.

Among all the signatures generated by Step-2 algorithm, we
denote the vulnerable field signature (defined in Section V-A)
as . The Step-3 algorithm contains two loops, denoted as

and , where and are parameters and
. In , we try to find the signatures which can improve

the detection coverage by at least, without generating any
false positives. Usually, is small. Therefore, if has no
false positive, this loop can help improve the true positives even
when adversaries are present. Then in , we use a sim-
ilar process to find signatures which can improve the detection
coverage by , but may cause false positives.

Calculating takes , and, thus, finding
the signature with maximum coverage takes .
Furthermore, removing samples matched by signature takes

. Therefore, the final running time for the Step-3
algorithm can be bounded by .

As proved in Section IV-C, to select the optimal small set of
signatures in general is NP-Hard. The algorithm proposed here
is not to search for the global optimum but to find a good solu-
tion with bounded false positive rate and false negative rate. For
nonbuffer-overflow worms, the algorithm will output an empty
set, since no signature meets the minimal requirement ( and

) on accuracy.

VI. ATTACK RESILIENCE ANALYSIS

In this section, we analyze the attack resilience of our algo-
rithm, i.e., the quality of the generated signatures (evaluated by
false negatives and false positives) when attackers launch at-

TABLE III
WORST CASES WITH DIFFERENT ASSUMPTIONS

tacks to try to confuse the LESG system. In particular, attackers
may deliberately inject noise into the suspicious pool.

A. Worst Case Performance Bounds

The ground truth signature (defined in
Section IV-B) is the best possible signature we could obtain,
theoretically having no false positive and no
false negative . The vulnerable field signature

(defined in Section V-A) may not be as per-
fect, since the length may slightly differ from the buffer
length . In Step-1 and Step-2 of the signature generation
algorithm, we tend to choose a more conservative signature
than the ground truth signature , i.e., , therefore

and . Actually, for most worms, the
vulnerable field length distributions of normal flows and worm
flows are well apart, i.e., there is a noticeable gap between the
two distributions, so by selecting an appropriate score function,
we can achieve .

Since we do not know which field is vulnerable a priori, the
Step-1 algorithm might select the vulnerable field and some
other fields (nonvulnerable fields) as well, especially in the case
that an attacker can inject crafted noises. Note that in these
noise flows, the nonvulnerable fields can be arbitrarily long to
mislead the signature generator, but the instances of vulnerable
field must be shorter than the corresponding buffer, otherwise
these noises will trigger the overflow and become worm sam-
ples actually. Our algorithm has an accuracy bound even when
crafted noises are injected. Theorem 2 to Theorem 5 proved
below present the accuracy bounds for four different cases, as
summarized in Table III.

Let be the set of true worm flows in and let
, which is the set of noises. Let the fraction of worm

flows in be , i.e., . Except Theorem 2, the proofs
of all the following theorems can be found in [43].

1) Performance Bounds With Crafted Noises: In Theorems 2
and 3, we prove the worst case performance bounds of our
system under the deliberate noise injection attacks, in which
the attackers not only fully craft the worms but also inject the
crafted noises. This is the worst case. The difference between
Theorem 2 and Theorem 3 is that Theorem 2 assumes there
is a noticeable gap between the length distributions of normal
flows and worm flows, which is the most common case in
reality. Theorem 3 considers even more general cases, in which
the two distributions might not be well apart so that we get

. Due to the space limit, we only present
the proof of Theorem 2 here. Please refer to our technical report
[43] for all the other proofs.

Theorem 2: If the vulnerable field signature has no false neg-
ative and no false positive, the three-steps algorithm outputs a
signature set such that and .

Proof: Let the vulnerable field signature be . We know

and . Let the signature set we find
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in be , and the signature set found in be
.

After , the residue of true worm samples
, which can be proved as follows. If should

be taken as the output since it will be better. Then there is no true
worm samples left. Therefore, .

Then we have

. Since

. Hence, .

Therefore, . Suppose the first output signature in

is ; then . Therefore after
, the remaining suspicious pool size

.
Since , we have . Since in

each iteration needs to improve coverage by , there at most
are iterations. Each iteration
may introduce false positive rate . Therefore, the
final false positive rate is bounded by

Theorem 3: If the vulnerable field signature has no false nega-
tive and the false positive rate is bounded by , the three-steps
algorithm outputs a signature set such that and

.
These bounds are still tight, as shown in the example of de-

liberated noise injection attacks in Section VI-B. Furthermore,
under the noise injection attacks, the experimental accuracy
results obtained in Section VIII-G are much better than these
bounds.

2) Performance Bounds Without Crafted Noises: Since in-
jected noises will slow down the worm propagation, the worm
authors might not want to do so. Suppose the noise ratio is 90%
(i.e., 90% of traffic from a worm is crafted noise), the worm will
propagate at least 10 times slower than before based on the RCS
worm model [43]. For example, the Code Red II may take 140 h
(6 d) to compromise all vulnerable machines instead of 14 h.

Without crafted noises, i.e., the noises are all from normal
traffic, we are able to prove even tighter performance bounds for
our system. Here, Theorem 4 assumes the length distributions
of normal flows and worm flows are well apart, while Theorem
5 removes this assumption. Both theorems assume the noises
in the suspicious pool are randomly sampled from the normal
traffic.

Theorem 4: If the noise in the suspicious pool is normal traffic
and not maliciously injected and the vulnerable field signature
has no false positive and no false negative, the three-steps al-
gorithm outputs a signature set such that and

.
In this case, the output signature set contains the vulnerable

field signature.
Theorem 5: If the noise in the suspicious pool is normal traffic

and not maliciously injected and the vulnerable field signature
has no false negative and a false positive rate bounded by ,
the three-steps algorithm outputs a signature set such that

and .
The evaluation results in Section VIII-B are consistent with

the theorems and are better than the bounds proved in the theo-
rems.

3) Discussions: In this part, we discuss some issues related
to the above theorems on attack resilience. Multiple worms. For

single worm cases, the theorems can be directly applied. In the
case that multiple worms are in the suspicious pool, for each
worm we treat the other worms as noises, and thus we have the
same bounds. Assumptions for theorems on attack resilience.
There are three general assumptions for all the theorems above.

First, there is a direct mapping between a field and the vul-
nerable buffer, thus that field of any worm must be longer than
the buffer. This has been validated by our wide investigation on
real-world buffer overflow vulnerabilities (in Section VIII-I).

Second, the attackers cannot change the field length distribu-
tions of normal traffic, which is also generally true.

Third, the vulnerable fields of all or most normal flows are
shorter than the buffer, no matter the flow is destined to that
vulnerable application or other applications. The reason for the
former is that if the buffer is so small that many normal
requests can overflow it, it will be noticed and fixed quickly, oth-
erwise the application cannot be popular; while the reason for
the latter is that normally the users’ requests are independent of
the server implementation, thus the profile of traffic destined to
different server applications should be similar. If this assump-
tion is invalid in a scenario, LESG might generate no signature
(in the case that many normal flows overflow the vulnerable
buffer) or inaccurate signature which will cause false positives
(in the case that the normal pool is not a representative sample of
the entire normal traffic). Actually, the vulnerable fields of most
normal flows are much shorter than the buffer, since the appli-
cation writers tend to allocate a buffer long enough for normal
use.

With above assumptions, in most cases we can generate ac-
curate signatures. Compared with the recent Hamsa system [7],
we have fewer assumptions and allow crafted noises.

B. Resilience Against the Evading Attacks

In this section, we discuss the resilience of our schemes
against several recently proposed attacks [12]–[16].

Deliberate noise injection attack can mislead most existing
worm signature generators [12], and is also the most threat-
ening attack toward our approach. However, even against this
attack, our approach can perform reasonably well (proved by
Theorem 2 and Theorem 3), especially in the case that the vul-
nerable field signature has no false positive. For example, if

% % and %, even with 90% crafted
noise, is bounded by 10% and by 1.8%, according
to Theorem 2. The experiment result in Section VIII-G is even
much better than that bound: the evaluation FN is 6.3%, and
FP is 0.14%. To the best of our knowledge, this is the first net-
work-based approach that can achieve this performance. The
suspicious pool poisoning attack proposed in Paragraph [13] is
similar to deliberate noise injection attack.

Randomized red herring attack proposed in Paragraph [13]
misleads the signature generators by the spurious tokens con-
tained in all the worm samples in suspicious pool coinciden-
tally. So the worm flows which do not contain the tokens are
false negatives. However, it is hard to launch an effective sim-
ilar attack toward our approach. Since the Step-3 algorithm will
choose only one among the true (vulnerable) signature and the
spurious ones, the probability of generating a spurious signa-
ture which can cover all the worm samples in suspicious pool
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and produce many false negatives is quite low. Moreover, con-
structing plenty of long fields is much more difficult than tokens.
In Paragraph [13], 400 spurious tokens are constructed.

Dropped red herring attack [13] includes some tokens at the
beginning of the worm spread and drops those tokens in later
propagation of the worm. This attack is also hard to implement,
because obviously the true signature is more probable to be gen-
erated than the changing spurious signatures.

Length dropping attack is a similar attack which can be de-
signed specially for length-based signatures. The attackers can
inject a long input at the beginning and gradually decrease
it in each run of infection to . However, in our design we

choose the signature length to be , where
is comparable to and is comparable to . Therefore, in
the worst case we only need to regenerate the length signature

times.
Innocuous pool poisoning is to pollute normal traffic pool.

However, this is very hard in general. First, the amount of
normal traffic is so huge that even to poison 1% is hard.
Second, using the random selection policy of normal traffic [7],
it is very hard for attackers to poison the traffic in the right time
to perform an effective evasion during the worm breakout.

Type I and II allergy attacks make the IDS generate signatures
which can deny current normal traffic and future normal traffic
respectively [14]. The type I attack does not work for our ap-
proach since we check the false positive rate against the normal
traffic. The type II attack is also ineffective toward our approach,
because unlike the contents of normal traffic, which may change
a lot, the field length profile of normal traffic is quite stable.

The blending attacks [15] cannot work for our approach be-
cause the worms have to use a longer-than-normal input for the
vulnerable field and they cannot mimic the normal traffic.

Recent research effort [16] has made a unified analysis of
the learning-based signature generation algorithms. Under the
assumptions discussed in Section VI-A3, LESG can work well
according to their analysis.

VII. DISCUSSIONS ON LENGTH-BASED SIGNATURE MATCHING

The operation of length-based signature matching has two
steps: protocol parsing of the flows and field length comparison
with the signatures. The latter is trivial. A straightforward way
for protocol parsing is using a general parser. Currently, Bro and
BINPAC based parsing can achieve 50–200 Mbps. Recently, Sc-
hear et al. proposed to simplify the protocol parsing for vulner-
ability signatures, which can achieve 1 Gbps or more [44]. On
the commercial products side, Radware’s security switch on an
ASIC-based network processor can operate at 3 Gbps link with
protocol parsing capability [45]. Therefore, with hardware sup-
port, protocol parsing can be done fast.

Actually, since the only aim of protocol parsing here is to
get the lengths of the signature fields in the flows, it can be
highly optimized and much faster than full parsing performed by
general parsers mentioned above. We will discuss the schemes
that speed up the process of protocol parsing, and consequently
signature matching.

A. Length-Based Signature in Regular Expression Format

We found it prevalent that in the worm flows targeting a cer-
tain vulnerability, the corresponding vulnerable field is prefixed

and suffixed with a byte sequence that matches a unique regular
expression respectively. For signature matching, we could
match those two regular expressions against a flow to locate
the vulnerable field, instead of fully parsing the entire flow.
In such a case, the signature can be converted
to length-based signature in regular expression format (ab-
breviated as L-RE signature). L-RE signature can be denoted
as a three-tuple , where and
are the prefix and suffix regular expressions respectively, and

is signature length, i.e., the lower bound of the distance
between and in worm flows. Regular expression
matching is a highly developed technique. Recent work [46]
has achieved 10 Gbps while matching thousands of regular
expressions. Specifically, IDS Snort has already included
signatures similar to L-RE signature to detect buffer overflow
attacks. For example, rule sid-3087 uses a regular expression
“/w3who.dll x3F ”2 to match malicious inputs
prefixed with “/w3who.dll x3F/i” and longer than 519 bytes
[2].

Given a length-based signature , we discuss the
methods for generating (or ) in two different cases.
The first case is that field has a prefix (or suffix) defined by
the protocol, which we call protocol-defined prefix (or suffix)
regular expression, denoted as (or ). The (or

) is known and can be directly used as (or ), i.e.,
(or ). In this case, (or ) is

field-specific, since the instances of field in any flows must
be prefixed (or suffixed) with a string matching (or ).

L-RE signatures with field-specific or are preva-
lent in text-based protocols. Text-based protocols are usually
line-based, which means each flow or part of each flow is com-
posed of multiple lines. Usually, each line can be interpreted
as a command with parameters. Each line is composed of three
string components: , and “ r n”. The can
be a list of parameters separated by a delimiter, such as white
space. To simplify the discussion we ignore the internal struc-
ture of here. But in the real implementation we do con-
sider the internal structure which makes the and a
little bit more complex. might correspond to certain field

( is the set of field IDs of variable length
fields in a given protocol, as defined in Section IV-A). We call
these lines field-related lines. usually contains tens of ele-
ments (namely, field IDs) at least, and any field has the
features that: i) The of certain field-related lines are in-
stances of field ; ii) field has a unique protocol-defined
prefix `` '', and the component of a
line matches ; iii) field has an invariant protocol-defined
suffix `` ''. For example, in HTTP protocol, field
GET-REQUEST has `` '' and
`` ''. For an example GET-request line “GET http://www.ts-

inghua.edu.cn/index.html HTTP/1.1 ”, `` ''
matches `` '', and “http://www.
tsinghua.edu.cn/index.html HTTP/1.1” is the instance of field
GET-REQUEST.

Compared with text-based protocols, binary protocols have
fewer fields with protocol-defined prefix or suffix, therefore
L-RE signatures with field-specific or are less
prevalent but still available. We will present two examples of

2Modifier “/i” means doing case-insensitive matching.
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Fig. 6. �� generation algorithm.

L-RE signatures with field-specific and for binary
protocols in the evaluation section.

The second case is that there is no apriori known prefix or
suffix for the signature field. But it is still possible that the worm
samples in the suspicious pool have a common prefix and suffix,
and we try to find out that. Using signature , we
can obtain all the worm flows which match signature
from suspicious pool . Then we search in to generate the
prefix pattern with the algorithm in Fig. 6. The basic idea
of the algorithm is to find the longest possible common regular
expression pattern prefixing field among all the worm flows.

We label all the simple fields preceding the signature field in-
cluding both fixed-length fields and variable-length fields from
1 to . The algorithm searches for the longest index subse-
quence , in which each field has either
invariant content or just invariant length in all the worm flow

, and concatenates these fields into one regular expression
. In Fig. 6, “ ” is string concatenation operator. We remove

the unnecessary expression “ ” at the beginning of . The
algorithm for generating is similar, except that the simple
fields following the vulnerable field are searched.

a) Analysis on Accuracy and Attack Resilience: Since gen-
erating length-based signature and converting it to L-RE sig-
nature are two separated processes, we just need to analyze
the false negatives and false positives produced by

generated in the latter process. We term them RE-caused
false negatives and RE-caused false positives.

Field-specific never produce false negatives.
generated by the algorithm in Fig. 6 is either vulnera-

bility-specific or exploit-specific. Vulnerability-specific is
required for exploiting certain vulnerability and also produces
no false negative, while exploit-specific can be replaced
by other byte strings. We have discussed that length-based sig-
nature has a great advantage that it is vulnerability-driven, but
exploit-specific will make L-RE signature exploit-specific,
which might be employed by the attackers to produce false nega-
tives. Suppose that one worm has exploit-specific at first,
and LESG generates L-RE signature . Later, the worm re-
places by , thus false negatives are produced.

We propose a simple scheme to resist such an attack. Since
LESG is fast, in the case above, it will generate a new signa-
ture soon, from the later worm samples in the suspicious
pool. Our scheme is that once an L-RE signature is generated
by the algorithm in Fig. 6, we compare its field ID with the ex-
isting L-RE signatures. If we find a signature having the same
field ID, we replace these two signatures by a length-based sig-
nature , where is the average of the two sig-
natures’ lengths. In this way, false negatives can only be pro-

duced in the short time before the second exploit-based signa-
ture is generated. Moreover, we have found in the experiments
(in Section VIII-H) that exploit-specific is not prevalent,
therefore the design of L-RE signature is still effective overall.

When we use L-RE signature, additional false positives also
might be produced, due to the non-vulnerable fields of normal
flows matching by chance. Therefore, when signature is
generated, we check its false positive rate FP against the normal
pool. If is applied; otherwise the original sig-
nature is applied. Therefore, although the attackers can craft
exploit-specific to increase FP in some cases, the perfor-
mance bound discussed in Section VI is unchanged. In addition,
for strictly line-based protocols (e.g., FTP control channel), the
data of which are purely field-related lines, field-specific
never produce RE-caused false positive, since field-specific
is exactly defined for locating the field by the protocol.

B. Partial Protocol Parsing

For the length-based signatures that cannot be converted to
L-RE signatures, we still could speed up the matching process
by partial protocol parsing, especially for binary protocols. We
summarize four cases in which certain fields need not be parsed,
as follows:

• A protocol often has multiple types of PDUs, and the type
is indicated by a type field. If the signature generator finds
that all the attacking PDUs have a common type, then
during signature matching, PDUs identified as other types
need not be parsed any more. More generally, besides the
type field, any field common to all the attacking PDUs can
work in a similar way.

• The fields positioned after the signature fields need not to
be parsed.

• For continuous fixed-length fields, as long as none of them
is used to determine the length of the following variable-
length fields, the parser can simply skip over them. A large
portion of fields are fixed-length fields in many protocols,
for example, DNS, as Fig. 3 shows.

• Suppose part of the field hierarchy of a protocol is like
, where is the signature field, is a

higher level field composed of another two variable-length
fields and , and indicates the length of . Obviously,
to obtain the length of field , we just need to parse and

, without identifying the detailed structure of and .
Examples can be found in protocols SSLv2 and SSLv3.

Therefore, we can see that the overhead of protocol parsing
for length signature matching is far less than full protocol
parsing. In the implementation, the parser should be capable
of parsing all the fields, while the real extent of parsing is
determined according to the provided signatures.

VIII. EVALUATION

We implemented the protocol parsing using Perl scripts with
BINPAC and Bro, as mentioned in Section III-A, and imple-
mented the LESG signature generator in MATLAB.

A. Methodology

We constructed the traffic of eight worms based on real-world
exploits and collected more than 27 GB of Internet traffic plus
123 GB of email SPAM. To test LESG’s effectiveness, we used
completely different datasets for LESG signature generation
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TABLE IV
SUMMARY OF WORMS

(i.e., training dataset) and for signature quality testing (i.e.,
evaluation dataset). For the training dataset, we used a por-
tion of the worm traffic plus some samples from the normal
traffic (as noise) to construct the suspicious pool, and we used
a portion of the normal traffic as the normal pool. For the
evaluation dataset, we used the remaining normal traffic to test
false positive rate and worm traffic to test false negative rate.
For attack resilience testing, we tested the performance of our
system under deliberate noise injection attack with different
noise ratios.

1) Polymorphic Worm Workload: To evaluate our LESG
system, we created eight polymorphic worms based on
real-world vulnerabilities and exploits from security-
focus.com, as shown in Table IV, by modifying the real
exploits to make them polymorphic. The eight worms use six
different protocols, DNS, SNMPv1, SNMPv1 , FTP, SMTP,
and HTTP. Since the original exploit code is not polymorphic
and the field lengths are fixed, we modified them as follows:
for the nonvulnerable simple fields, we randomly chose the
lengths with the same distribution as those in normal traffic;
for the vulnerable simple fields, the lengths in the original
exploit codes are mostly much longer than the buffer lengths,
so we used these values as the upper bound in the worms and
used the hidden buffer length or a larger value that we believed
was necessary to exploit the vulnerability as the lower bound
(specified by the row “ground truth” in Table IV); moreover,
for some exploits that have a rigid exploit condition about field
length, we kept that fixed length. In Table IV, the row titled
“vulnerable field length” specifies whether the overflowing
field length is fixed or not. For the vulnerability for which we
cannot find the ground truth by literature searching, we indicate
such as “unknown.” The detailed descriptions of the worms we
created are as follows.

DNS worm. It’s a variant of the lion worm that attacks a vul-
nerability of BIND 8, the most popular DNS server. The exploit
code constructs a UDP DNS message with a QUESTION sec-
tion whose length is 493 bytes and difficult to make variable.

SNMP worm. It attacks a vulnerability in the NAI sniffer
agent. The vulnerable buffer is 256 bytes long and stores the
data transferred in the field ObjectSyntax.

SNMP Trap worm. The worm targets Mnet Soft Factory
NodeManager Professional. When it processes SNMP Trap
messages, it allocates a buffer of 512 bytes to store the data
transferred in the field ObjectSyntax.

FTP worm I. It exploits a vulnerability in the Sami FTP
Server. The content of the USER command must be longer than
228 bytes to overflow the buffer storing it.

FTP worm II. It targets a popular desktop FTP server,
Serv-U. The content of the SITE CHMOD command plus a
path name is stored in a buffer which is 419 bytes long.

FTP worm III. It targets the BulletProof FTP Client.
The content of the FTP reply code 220 must be longer than
4104 bytes.

TABLE V
DATASET SUMMARY FOR EVALUATION

SMTP worm. This vulnerability resides in the RCPT TO
command of the Ipswitch IMail Server.

HTTP worm. It exploits the IIS vulnerability used by a
famous worm CodeRed. The difference is that we varied the
length of our created worm, while CodeRed has a fixed length.

2) Normal Traffic Data: The traffic traces were collected
at the two gigabit links of the gateway routers at Tsinghua
University campus network in China on June 21–30, 2006.
All the traffic at Tsinghua University to/from DNS, SNMPv1
Trap, SNMPv1, HTTP and FTP control channel was collected
without any form of sampling. We used another 123 GB SPAM
dataset from some open relay servers at a research organization
in the U.S. for the SMTP. The datasets are summarized in
Table V. Since an SNMPv1 Trap message is sent to port 162
and its format is different from other types of messages, we
treat SNMPv1 Trap as a protocol separated from SNMPv1 on
port 161. Also note that for evaluation purpose, in our prototype
system, we only parsed the GET request for HTTP, which has
the same effect as complete parsing because the worm is only
related to the GET request. The traces are checked by the Bro
IDS system to make sure that they are normal traffic.

3) Experiment Settings: In the Step-1 algorithm, we conser-
vatively set to be 0.1%, i.e., the server should be able to
handle 1000 normal requests without crashing (buffer overflow
triggered). We believe this is reasonable for most popular im-
plementations of any protocol. We choose %, a con-
servatively small value, because attackers may inject noise into
the suspicious pool.

The score function in Step-2 is
, which provides a good tradeoff

between FP and COV, working well in practice. The score
is directly proportional to COV. In Fig. 7, the three curves
respectively correspond to , 0.6 and 1. As the figure
shows, the increment of score caused by changing FP from

to is more than that of changing FP from to
. Therefore, when FP is high (e.g., ), the function

tends toward improving FP, while when FP is pretty low (e.g.,
), it tends toward improving COV.

In Step 3, we choose % and %, indicating that we
focus on the worms that cover more than 1% of the suspicious
pool.
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Fig. 7. Score function illustration.

TABLE VI
SIGNATURES AND ACCURACY UNDER DIFFERENT POOL SIZE AND NOISE

B. Signature Generation for Single Worm With Noise

We evaluated the accuracy of LESG with the presence of
noise. The noise is the set of flows randomly sampled from
normal traffic, and mixed with worm samples to compose the
suspicious pool. We chose DNS, SNMP, , SMTP, and
HTTP protocols to demonstrate the case of a single worm
with noise. For HTTP we also tested our algorithm against the
CodeRed worm.

For each protocol, we tested the suspicious pool sizes of 50,
100, 200, and 500, and at each size we changed the noise ratio
from 0% to 80%, increasing 10% in each test. After signature
generation, we matched the signatures against another 2000
samples of worms and an evaluation set of normal traffic to test
the sensitivity and accuracy.

Table VI shows the range of the signatures we generated and
their accuracy. Tr. FN (FP) denotes false negative (positive) rate
in the training dataset, while Ev. FN (FP) denotes false nega-
tive (positive) rate in the evaluation dataset. Under all the pool
sizes and noise ratios, the same signature fields are generated,
and all have excellent evaluation FN and FP. Because the size
of suspicious pool is limited, the signature length varies in dif-
ferent tests. Note that generated signature lengths are smaller
than the true buffer length, since most instances of the corre-
sponding field in normal flows are much shorter than the buffer,
as discussed in Section VI-A3.

C. Signature Generation for Multiple Worms With Noise

We also evaluated the case of multiple worms with noise
using the FTP protocol. We have three FTP worms in total. We
tested the suspicious pool sizes of 50, 100, 200, and 500, and

TABLE VII
RESULT OF EACH STEP FOR THE DNS WORM

TABLE VIII
SPEED OF PROTOCOL PARSING AND SIGNATURE GENERATION

at each size we changed the noise ratio from 0% to 70%, in-
creasing 10% in each test. The result is also shown in Table VI.

D. Evaluation of Different Stages of the LESG Algorithm

The LESG algorithm has three steps, and we evaluated the
effectiveness of each step. Table VII illustrates the result of each
step for the DNS worm with a suspicious pool of size 100 and
a noise ratio 50%. Table VII shows that the false positive rate
is largely decreased by refining each signature length in Step-2.
And according to the ground truth shown in Table IV, we can see
that in Step-3, the best signature is selected, further decreasing
the false positives.

E. Pool Size Requirement

We tested the accuracy of our algorithm when only a small
suspicious pool is available. We chose suspicious pools of size
10 with a noise ratio of 20% and of size 20 with a noise ratio
of 50%. All the tests generated signatures within the range
presented in Table VI. This small size requirement validates
LESG’s ability of reacting to worm propagation rapidly.

We did similar tests for the DNS worm using normal pool
sizes of 5 K, 10 K, 20 K, and 50 K, and we found that our
approach is not sensitive to the size of the normal pool either.

F. Speed and Memory Consumption

We evaluated the parsing speed using Bro and BINPAC, and
the speed of our signature generation algorithm. Since HTTP
was not completely parsed, we only provide the results of the
other five protocols. Table VIII shows that the speed of signature
generation is quite fast, though it is influenced by the sizes of
the suspicious pool and the normal pool. The protocol parsing
for the normal pool can be done offline. We can run the process
every once in a while (e.g., several hours). These datasets were
collected over a 20-h period. For the suspicious pool, since it
is much smaller than the normal pool, the protocol parsing can
be done quickly. Moreover, as mentioned in [47], the BINPAC
compiler can be built with parallel hardware platforms, which
makes it much faster.
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TABLE IX
MEMORY USAGE OF THE ALGORITHM

The memory usage of the signature generation algorithm im-
plemented in Matlab was evaluated under different pool sizes,
shown in Table IX. The memory usage is proportional to the
normal pool size and the number of fields.

G. Performance Under Deliberate Noise Injection Attacks

As discussed in Section VI, deliberate noise inject attack is
the most threatening attack toward LESG, among all the pro-
posed attacks. Therefore, we implemented one to evaluate the
attack resilience of LESG, with assumptions that: 1) attackers
know all the parameters used in LESG and can tailor their at-
tacks against LESG; 2) attackers can obtain some normal traffic
samples, and then estimate field length distributions based on
the traffic samples.

We implemented this attack by modifying the Lion worm
of the DNS protocol. There are 15 fields in the DNS protocol.
Only one field has to be long enough to overflow the buffer,
which cannot be controlled by attackers. The attackers can use
the other 14 fields to craft arbitrary noise.

In the experiment, we simulated the situation in which the
attacker captures the normal traffic with 100 K flows to optimize
the attack. To make sure the attacker’s normal traffic has similar
length distributions as the training normal pool we used, in our
experiment we randomly permutated the 320 K DNS normal
flows shown in Table V, and divided them into the 100 K flow
pool for attackers and the 220 K flow normal pool for the LESG
system.

In the experiment, we assume all the noise is deliberately in-
jected. We test the noise ratio from 8% to 92%, increasing 7%
in each test. We use a suspicious pool of size 200. For the Lion
worm, the vulnerable field signature has no false positive. The
Proof of Theorem 2 shows that the false negatives should be
less than portion of the suspicious pool. Therefore, at most

false negatives can be
generated. Under a given noise ratio, among the 14 fields, we
search all the possible combinations and choose the optimal set
of fields to increase the false positives. Then we choose one of
the remaining fields to increase the false negatives.

We use another 2000 worms to test the evaluation false neg-
atives and the 4.4M DNS flows shown in Table V to test the
evaluation false positives. The results are shown in Figs. 8 and
9. The training false negatives and the evaluation false negatives
are very close, so the two lines coincide with each other. From
the results we know that even with 90% deliberately injected
noise, our system still only has a false negative rate of 6.3% and
a false positive rate of 0.14%. This indicates that it is quite hard
for attackers to increase the false positives. The reason of this
phenomenon is that the worst case bound happens when each
field can introduce false positives in a mutually exclusive way,
which seldom happens and is hard to achieve in practice.

Fig. 8. False negative rate with different noise ratio.

Fig. 9. False positive rate with different noise ratio.

H. Length-Based Signature in Regular Expression Format

We evaluated the prevalence and accuracy of L-RE signatures
(defined in Section VII) for both text-based protocols and binary
protocols.

We analyzed six text-based protocols, including FTP, HTTP,
SMTP, POP3, IRC, and IDENT. As discussed in Section VII-A,
field-specific , never produces false negatives.
Moveover, among the six protocols, FTP (control channel),
IRC and IDENT are strictly line-based, thus also never have
false positives produced by field-specific , as discussed in
Section VII-A. However, for the other three protocols, besides
the field-related lines (defined in Section VII-A), there are also
many types of message bodies (e.g., transferred files) which
might match certain L-RE signature whose field ID belongs to

(defined in Section VII-A) and generate false positives.
We investigated all the fields belonging to the of protocol

HTTP and SMTP. The total number of fields is in column
of Table X. Recall that for any field of text-based proto-
cols, protocol-defined suffix is “ r n” invariantly, and pro-
tocol-defined prefix has the form of `` ''. Ex-
amples of could be “/GET s/i” for HTTP field GET-RE-
QUEST, and “/RCPT TO s/i” for SMTP field RCPT-TO-COM-
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TABLE X
FALSE POSITIVES OF L-RE SIGNATURES FOR TEXT-BASED PROTOCOLS

TABLE XI
FALSE POSITIVES OF L-RE SIGNATURES FOR BINARY PROTOCOLS

MAND. As discussed in Section VII-A, for a length-based sig-
nature whose field ID is , its corresponding possible L-RE
signature , which we term as field ’s
possible L-RE signature, will have and

. In this evaluation, we matched of each investigated
field against the normal traffic traces, and found that for each

, the matches are all in field-related lines (column “
Matches” presents the total number of the matches of all fields),
i.e., no match is in message bodies (column “False Matches”).
Therefore, each field’s possible L-RE signatures will also have
no match in the message bodies, namely, no RE-caused false
positive.

For binary protocols, we analyzed six vulnerabilities, in-
cluding the three (DNS, SNMP and ) discussed in this
section before, one of NTP (Bugtraq ID 2540), one of SSLv2
(Bugtraq ID 5363, attacked by worm Slapper), and one of
DCOM RPC (Bugtraq ID 8205, attacked by worm Blaster).
Among them, the one of SSLv2 has no L-RE signature since
the SSLv2 message is encrypted; the one of RPC may have ex-
ploit-specific , for an incompletely polymorphic
worm; and the other four vulnerabilities all have field-specific
or vulnerability-specific , therefore no RE-caused false
negative can be produced. In other words, at least 4 out of these
6 vulnerabilities have L-RE signatures. Since we chose these
vulnerabilities randomly, they validate the prevalence of L-RE
signature to some extent.

We generated and for the three vulnerabilities of
DNS, SNMP and . We matched “ ” against the
normal traces, and the total number of matches is presented in
row “ Matches” of Table XI. Note that since and
of the vulnerability of DNS are vulnerability-specific, it is rea-
sonable that there is no match in normal flows. For the vulner-
abilities of SNMP and , we matched L-RE signature

( is generated in Section VIII-B) against the
traces, and found no RE-caused false positive.

I. Vulnerability Coverage

As discussed in Section VI-A3, our approach works well only
for the case that a protocol field must be longer than normal
lengths to perform a successful exploit. To find out the per-
centage of vulnerabilities we can handle, we made an inves-
tigation on real-world vulnerabilities. In securityfocus.

com, we searched for the vulnerabilities whose headlines con-
tain keyword “overflow” and another keyword which is one
of some widely used protocols (including DNS, SNMP, NTP,
SSL, HTTP, FTP, and SMTP) or corresponding applications (in-
cluding bind, ntpd, apache, iis, *httpd, *ftpd, and sendmail).
Among the total 385 search results, we randomly selected 172
for checking. Since the available references of many vulnerabil-
ities are not detailed enough, finally we achieved conclusions for
83 vulnerabilities: only 4 (less than 5%) out of them have no ac-
curate length-based signature. The four special cases include a
buffer filled with cumulative PDUs, and some complicated heap
overflows. Therefore, at least to some extent, this investigation
proves that our approach has a high coverage of the buffer over-
flow vulnerabilities.

IX. CONCLUSION

In this paper, we propose a novel network-based automatic
worm signature generation method that generates length-based
signatures for buffer overflow worms. This is the first attempt
to generate vulnerability-driven signatures at network level. We
build a field hierarchy model, and formally define the length-
based signature generation problem based on it. The algorithm
designed to solve that problem has good accuracy bound even
under deliberate noise injection attacks. We also discuss the
schemes to speed up signature matching. We further show that
our approach is fast and accurate with experiments, using real-
world vulnerabilities and network traffic.
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