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ABSTRACT
Botnets dominate today’s attack landscape. In this work we inves-
tigate ways to analyze collections of malicious probing traffic in
order to understand the significance of large-scale “botnet probes”.
In such events, an entire collection of remote hosts together probes
the address space monitored by a sensor in some sort of coordi-
nated fashion. Our goal is to develop methodologies by which sites
receiving such probes can infer—using purely local observation—
information about the probing activity: What scanning strategies
does the probing employ? Is this an attack that specifically targets
the site, or is the site only incidentally probed as part of a larger,
indiscriminant attack?

Our analysis draws upon extensive honeynet data to explore the
prevalence of different types of scanning, including properties such
as trend, uniformity, coordination, and darknet avoidance. In ad-
dition, we design schemes to extrapolate the global properties of
scanning events (e.g., total population and target scope) as inferred
from the limited local view of a honeynet. Cross-validating with
data from DShield shows that our inferences exhibit promising ac-
curacy.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Oper-
ations—network monitoring; C.2.0 [Computer-Communication
Networks]: General—Security and protection

General Terms
Algorithms, Measurement, Security

Keywords
Botnet, Global property extrapolation, Honeynet, Scan strategy in-
ference, Situational awareness, Statistical inference

1. INTRODUCTION
When a site receives probes from the Internet—whether basic

attempts to connect to its services, or apparent attacks directed
at those services, or simply peculiar spikes in seemingly benign
activity—often what the site’s security staff most wants to know is
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not “are we being attacked?” (since the answer to that is almost
always “yes, all the time”) but rather “what is the significance of
this activity?” Is the site being deliberately targeted? Or is the site
simply receiving one small part of much broader probing activity?

For example, suppose a site with a /16 network receives mali-
cious probes from a botnet. If the site can determine that the botnet
probed only their /16, then they can conclude that the attacker may
well have a special interest in their enterprise. On the other hand,
if the botnet probed a much larger range, e.g., a /8, then very likely
the attacker is not specifically targeting the enterprise.

The answers to these questions greatly influence the resources
the site will choose to employ in responding to the activity. Obvi-
ously, the site will often care more about the probing if the attacker
has specifically targeted the site, since such interest may reflect a
worrisome level of determination on the part of the attacker. In-
deed, such targeted attacks have recently grown in prominence.
Yet given the incessant level of probing all Internet addresses re-
ceive [21], how can a site assess the risk a given event reflects?

In this work we seek to contribute to the types of analysis that
sites can apply to gauge such risks. We orient much of our method-
ology with an assumption that most probing events reflect activity
from the coordinated botnets that dominate today’s Internet attack
landscape. Our approach is limited to analyzing fairly large-scale
activity that involves multiple local addresses. As such, our tech-
niques are suitable for use by sites that deploy darknets (unused
subnets), honeynets (subnets for which some addresses are popu-
lated by some form of honeypot responder), or in general any mon-
itored networks with unexpected access, for which we can detect
botnet probing events. The main contribution of this paper is the de-
velopment of a set of techniques for analyzing botnet events, most
of which do not require the use of responders. For simplicity, we
will refer to the collection of sensors as the site’s Sensors.

In contrast to previous work on botnets, which has focused on
either host-level observations of single instances of a botnet activ-
ity, studies of particular captured botnet binaries [11], or network-
level analysis of command-and-control (C&C) activity [24], our
techniques aim to characterize facets of large-scale botnet probing
events regardless of the nature of the botnet. Our analysis does not
require assumptions about the internal organization and communi-
cation mechanisms employed by the botnets. We focus on charac-
terization of botnet properties based on inferences from their prob-
ing behavior. In addition, our approach has the significant benefit
of requiring only local information, rather than global information
as required by collaborative efforts such as DShield [27]. We give
more detailed comparisons in Section 6.

We frame the contributions of our work as follows. First, we
develop a set of statistical approaches to assess the attributes of
large-scale probing events seen in Sensors, including checking for
trends, uniformity, coordination, and one specific form of “hit-list”
(Section 3). The type of hit-list we focus on is liveness-aware scan-
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Figure 1: System architecture.
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Figure 2: The distribution of the malicious payload
discovered in the scan events.

ning, in which the attackers try to avoid darknets. For trend and uni-
formity checking, the statistical literature provides apt techniques,
but assessing coordination and use of hit-lists requires developing
new techniques. We confirmed the consistency of the statistical
techniques for inferring event properties with manual inspection or
visualization.

Applying such statistical testing on massive honeynet traffic re-
veals some interesting and sophisticated botnet scan behaviors such
as coordinated scans. We then used our suite of tests to frame the
scanning strategies employed during different probe events, from
which we can further extrapolate the global properties for particu-
lar strategies.

Second, we devise two algorithms to extrapolate the global prop-
erties of a scanning event based on a sensor’s limited local view.
These algorithms are based on different underlying assumptions
and exhibit differing accuracies, but both enable us to infer the
global scanning scope of a probing event, as well as the total num-
ber of bots including those unseen by the Sensors, and the average
scanning speed per bot (Section 4). The global scanning scope en-
ables the site’s operators to assess whether their network is a spe-
cific target of botnet activity, or if instead the botnet’s scanning
targets a large network scope that simply happens to include the
site. The estimated total botnet size can help us track trends in how
botnets are used, with implications for their C&C capabilities.

The algorithms are rooted in the observation (confirmed by our
checking of scanning properties) that the most frequent scanning
patterns reflect uniform random scanning or uniform hit-list scan-
ning. Indeed, nearly all of the probing events we observed fol-
low one of these two scan patterns.1 In Section 5, we evaluate our
techniques using 24-month trace (293 GB total) of Honeynet traffic
collected at a large research institution. Of the events classified as
likely botnet activity (i.e., not misconfigurations or worms), most
reflected either uniform-random or uniform-hitlist scanning. An-
alyzing the data, we find that 66.5% of botnet events exhibit uni-
form random scanning and 16.3% of botnet events reflect hit-list
scanning, 85% of which were also uniform.

Also, we find most of these probes include attacks. As shown in
Figure 2, our honeynet measurements find that about 84% of scan
events carry malicious payloads targeting vulnerabilities of differ-
ent protocols, such as SMB/RPC, MSSQL, VNC, etc.2 We note
that such botnet scans are one key technique employed for botnet
recruitment [24]. Through event correlation study, we also find
some interesting behaviors of how botmasters control their bots.

1Of course there is the usual “arms race” here between attackers
and defenders. If our techniques become widely used, then attack-
ers may modify their probing traffic to skew the defenders’ analy-
sis. But until the botmasters take steps to do so, these techniques
have value. We adopt the view common in network security re-
search that there is significant utility in “raising the bar” for attack-
ers even if a technique is ultimately evadable.
2“Not Vul.” consists of instances where the honeynet received little
or no payload, or purely service-testing probes.
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Figure 3: Temporal distribution of source count for
VNC(5900).

To validate our estimates of the global properties, we compare
our results with those from DShield [27], the Internet’s largest
global alert repository. We find that in 75% of cases, our extrap-
olated scope is within a factor of 1.35 of the scan scope observed in
DShield data. In all the cases it is within a factor of 1.5. The results
indicate that our approaches hold promise for sufficient accuracy
to enable sites to make reliable inferences, with the caveat that we
were unable to find any instances of events in our current dataset
that reflected a global scope much different from /8.

2. SYSTEM FRAMEWORK
The architecture of our design is shown in Figure 1. The system

has two subsystems: botnet detection and botnet inference. In this
paper we focus on the latter (righthand half of Figure 1). All of
the steps in our analysis system are automated, most of them fully
so. We mainly use the Honeynet sensor to drive the rest of the dis-
cussion, although we can generally apply our analysis techniques
(the botnet inference subsystem) to botnet probe events detected
by other types of sensors. The system classifies traffic seen on the
sensors by different protocols or by session semantics. We define
a session as a set of connections between a pair of hosts with a
specific purpose, perhaps involving multiple application protocols.
The system extracts events based on the number of unique sources
arriving in a window of time (cf. the spikes in Figure 3), classifying
the activity into misconfigurations, worms, and botnet-like probing.

2.1 Honeynet and Data Collection
Our detection sensor consists of ten contiguous /24 subnets

within one of a large research institution’s /16 networks. We de-
ployed Honeyd responders [23] on five of the subnets and operated
the other five completely “dark”. (We use this latter for hit-list de-
tection.) The Honeyd configuration is similar to that used by Pang
et al.in [21]: we simulate the HTTP, NetBIOS, SMB, WINRPC,
MSSQL, MYSQL, SMTP, Telnet, DameWare protocols, with echo
servers for all other port numbers. We evaluate our analysis tech-
niques using 293 GB of trace data collected over two years (2006



and 2007).

2.2 Botnet Detection Subsystem
In this paper we mainly focus on botnet inference. For the com-

pleteness we briefly introduce how to detect botnet events here. The
details is available in our technique report [18].
Traffic Classification: Attack traffic can have complex session
structure involving multiple application protocols. For example,
an attacker can send an exploit to TCP port 139 which, if success-
ful, results in opening a shell and issuing an HTTP download com-
mand. Often the application protocol contacted first is the protocol
being exploited (an exception is an initial connection to a portmap-
per service), so we label sessions with the service associated with
the first destination port appearing in them. Doing so also pro-
vides consistent labeling for connection attempts seen in darknets
or other types of sensors. We aggregate connections into sessions
using an approach similar to the first step algorithm by Kannan et
al [14].

For application protocols not commonly used, the background
radiation noise (including individual port scans) is typically low,
and thus we use port numbers to separate event traffic. However,
noise is usually strong for popular protocols, requiring further dif-
ferentiation based on payload (when available). To do so, we imple-
mented payload summary scripts for 20 commonly seen protocols,
based on the Bro system’s network analysis capabilities [22].
Event Extraction: Figure 3 shows source arrival counts for VNC
(TCP port 5900) for the year 2006 on our sensor, where each point
represents the number of sources within a six-hour interval. Large
spikes in such plots generally correspond to scanning from worms
or apparent botnets, or misconfigurations. We classify such spikes
as events, as follows. We define the noise strength N as the per-
interval count of unique sources seen in the absence of events. Sup-
pose the time interval length is I . We calculate N as the median
of unique source counts of K continuous time intervals before the
event. We define signal strength S = X − N as the peak unique
source count arrival X minus the noise strength N , and define the
signal-to-noise ratio as SNR= S

N
= X−N

N
= X

N
− 1.

In our evaluation we use I = 6 hours and K = 120. The ag-
gregated time window I × K is about 30 days. We only examine
events with SNR≥ 50. We automatically extract potential events as
follows: for any given time interval, we calculate the median of the
previous normal K intervals and the SNR. For those spikes exceed-
ing our SNR threshold, we extend the time range to both sides until
S ≤ ωN where ω is a tunable parameter controlling the amount of
the signal tail to include in the event. (We use ω = 5, though we
find ranging it over 3 . . . 8 does not significantly alter the results.)
For multiple events within one time series, we extract the events
iteratively, starting with the event with largest SNR.

One problem we have to consider is that some events have com-
plex session structures involving multiple protocols. After traffic
classification by protocol information, a single event can be sepa-
rated to multiple events. Therefore, after event classification, we
need to merge them. We detect such cases by checking the con-
nection correlation. If two connections are in one session, they will
be both from host A to host B and the protocols of the two con-
nections are fixed. For example, suppose the first connection is
HTTP and the second one is WINRPC. If we find such events to
be highly correlated, i.e., for most connections in the HTTP event,
each HTTP connection is followed by a WINRPC connection from
the WINRPC event for the same source and destination pair, we
merge them as one event.
Event Classification and Separation: We separate misconfigura-
tions from worms or botnets based on the observation that botnet
scans and worms should contact a significant range of the IP ad-
dresses, whereas misconfigurations exhibit a few hot-spot targets.
We found that most misconfiguration events are due to P2P traf-
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Figure 4: Model Checking Design Space.

fic. The detailed analysis of these misconfiguration is our technical
report [17, 18].

In general, probing from worms (self-propagating processes) can
look very similar to that from botnets (processes under a common
C&C), and indeed the line between the two can blur depending on
the nature of the commands that botmasters issue to their bots. For
our purposes, we identify and remove as worms those events that
exhibit an exponential growing trend (per the technique developed
in [31]) and deem the remainder as botnet probing events.

2.3 Botnet Inference Subsystem
Scan Pattern Checking: For botnet probing events, there are nu-
merous scanning strategies that attackers can potentially use. Iden-
tifying the particular approach can provide a basis to infer further
properties of the events and perhaps of the botnets themselves. We
refer to these strategies as scan patterns, and undertake to develop
a set of scan-pattern checking techniques to understand different
dimensions of such strategies:

• Monotonic trend checking
• Hit list checking
• Uniformity checking
• Dependency checking

For details, see Section 3.
Global Property Extrapolation: Once we identify a probing
event’s scan pattern, we then use the scan pattern to extrapolate
a global view of the event. We focus on two of the most common
scan patterns: uniform random scanning, and uniform hit-list scan-
ning. We confirm their common use both from botnet source code
analysis (Section A) and experimental observations (Section 5). We
then extrapolate the global scan scope and the global number of
bots based on these two scan patterns, using techniques developed
in Section 4.

3. PROPERTY CHECKING OF BOTNET
SCAN PATTERNS

The whole design space of the botnet probing strategies is very
large. It is hard to consider all of them in our botnet inference
framework. Through botnet source code analysis and reason-
ing what a rationale botnet master will do (the details is in Ap-
pendix A), We find the uniform random scanning, hit-list scanning,
monotonic scanning and coordinated permutation scanning are the
strategies more likely used by the botmasters, given they are simple
and effective.

In this section we develop a set of analysis algorithms for de-
tecting these scan strategies. Each is designed to check a single
dimension of characteristics in the scan pattern. Then we combine
the characteristics of an event to construct the scan pattern in use.

We first classify the scan traffic pattern into monotonic, partially
monotonic and non-monotonic trends. For non-monotonic trend,
we assess the possible use of a hit-list or random-uniform scanning
(even distribution of scans across the portion of the sensor space).
Finally, for random-uniform pattern we test whether the senders
can be modeled as independent.
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3.1 Monotonic Trend Checking
Question: Do senders follow a monotonic trend in their scan-

ning?
Monotonically scanning the destination IP addresses (e.g., se-

quentially one after another) is a common scan strategy widely
used by network scanning tools. In our evaluation, we did find a
few events which use the monotonic trend scanning. Furthermore,
for random events, the monotonic trend checking can help us filter
out the noises caused by the non-bot scanners.

For each sender, we test for monotonicity in targeting by apply-
ing the Mann-Kendall trend test [15], a non-parametric hypothesis
testing approach. In our study, we set the significance level to 0.5%,
since a higher significance level will introduce more false positives
and we need to check thousands of sources. In our evaluation, we
manually check the statistical power and find it high enough to de-
tect weak trends. The intuition behind this test is that if the data
have a monotonic trend, the aggregated sign value(>→ 1; =→ 0;
<→ −1.) of all the consecutive value pairs would be out of the
range the randomness can achieve. In our technical report [18], we
describe the detailed approach and our enhancement to the original
Mann-Kendall trend test.

We label an entire event as having a monotonic trend if more
than 80% of senders exhibit a trend, and for further analysis re-
move those that do not reflect a trend as likely representing sepa-
rate activity (and thus likely removing a source of potential noise).
We instead label the event as non-monotonic if more than 80% of
senders do not exhibit a trend. We label the remainder as partial
monotonic.

3.2 Hit-List Checking
Question: Do the bots use a target hit-list for scanning?
By hit-list scanning, we refer to an event for which the attacker

appears to have previously acquired a specific list of targets. Hit-
list is often employed by sophisticated botmasters to achieve high
scan efficiency. It is important for the network administrators to
know whether they are in the hit-list. When that is the case, most
likely they will be re-scanned by the attacker again and again. We
detect the use of a hit-list based on the observation that such scans
should heavily favor the use of “live” addresses (those that respond)
to “dark” (non-responsive) addresses.

To this end, we operate half of our sensor region in a live fashion
and half dark. If we observe an event in the Honeynet portion, but
not in the darknet portion, this provides strong evidence that the
scan used a hit list. However, one consideration is event “pollution”
(sources that actually are background noise rather than part of the
botnet). We do not require a complete absence of darknet scanning,
instead test for the prevalence of honeynet scans over darknet scans
significantly exceeding what we would expect.

Figure 5 compares an example hit-list event (WINRPC-070625)
versus a random-uniform event (VNC-060729). To distinguish be-
tween two such cases, we define the ratio of the number of senders
which target the darknet (md) over those of the honeynet (mh) as
θ = md

mh
. Then we test whether θ crosses a given threshold. In our

evaluation, we find the results are not sensitive to the threshold we

choose.
Note that for the events that require application-level analysis

to separate the activity from the background traffic (e.g., different
types of HTTP probing), sources in the event will necessarily be
restricted to the honeynet because application-level dialog requires
responses that the darknet cannot provide. In this case we can still
perform an approximate test, by testing the volume of traffic seen
concurrently in the darknet using the same port number. Doing so,
may miss some hit-list events, however, because we tend to overes-
timate the amount of activity the botnet exhibits in the darknet.

Even other factors could potentially cause an imbalance between
the darknet and the Honeynet. However, most of these do not re-
sult in a significantly small θ, except the one in which an attacker
chooses a small scan range that happens to include only the Hon-
eynet addresses. However, even if this occurs we would also (if
it does not reflect previous scanning, i.e., is not a hit-list) expect
it to occur equally often the other way around, i.e., including only
darknet addresses but not Honeynet addresses, which have not been
observed over two years.

In the 203 events we analyzed, we find 33 (16.3%) hit-list events.

3.3 Uniformity Checking
Question: Does an event uniformly scan the target range?
A natural technical for bots is to employ uniform random scan-

ning across the target range. Testing whether the scans are evenly
distributed in the honeynet sensor can be described as a distribu-
tion checking problem. We employ a simple χ2 test, which is well-
suited for the discrete nature of address blocks. For χ2 test, when
choosing the number of bins for the test, a key requirement is to
ensure that the expected value Ei for any bin should exceed 5 [26].
Accordingly, given that our events have at least several hundred
scans in them, we divide the 2,560 addresses in our Honeynet into
40 bins with 64 addresses per bin. We then use the χ2 test with
a significance level of 0.5%, which is found to work well in our
subsequent evaluation in Section 5.3.

3.4 Dependency Checking
Question: Do the sources scan independently or are they coor-

dinated?
Sophisticated scanning strategies can introduce correlations be-

tween the sources in order to control the work that each contributes
more efficiently. For example, In Appendix A.2, we describe a
more efficient coordinated scheme ABPS (Advanced Botnet Per-
mutation Scanning) based on permutation scanning will induce
negative correlations in the targeting among the sources (they try
to “get out of each other’s way”).

Since traditional approach only an work in linear dependence or
two-variable cases, we develop a new hypothesis testing approach.
To test for such coordination, we use the following hypothesis test.
The null hypothesis is that the senders act in a uniform, indepen-
dent fashion (where we first test for uniformity as discussed above);
while the alternative hypothesis is that the senders do not act in an
independent fashion. If an event comprises n scans targeting d des-
tinations in a uniform random manner, we can in principle calculate
the distribution of the number of destinations that receive exactly
k scans, Zk. We then reject the null hypothesis if the observed
value is too unlikely given this distribution (we again use a 0.5%
significance level).

THEOREM 1. If n scans target d addresses in a uniform inde-
pendent manner, the number of addresses Z0 (k = 0) which do not
receive any scan follows the probability distribution function:

P (z0) =

 

d

z0

!

× Stirling2(n, d − z0) × (d − z0)!/dn



Property name uniform uniform estimation
scanning hit list method

Global target scope Yes Yes indirect
Total # of bots Yes Yes indirect
Total # of scans Yes Yes indirect
Average scan speed per bot Yes Yes indirect
Coverage hit ratio Yes No direct
Sender OS distribution Yes Yes direct
Sender AS distribution Yes Yes direct
Sender IP prefix distribution Yes Yes direct

Table 1: Global properties estimated from local observations.

The Stirling2(n, y) denotes the Stirling number of the second
kind [29], which is the number of ways to partition n elements
to y non-empty sets. The proof is in Appendix B.

However, if n � d, then the sensor range will be sparsely popu-
lated, and this distribution does not give us much statistical power.
Instead, we need to use a larger value of k. The more detailed anal-
ysis is in our technique report version [18].

We validate our tests using Monte Carlo simulations with and
without introduced correlations. We also confirm that the test cor-
rectly detects the correlations introduced by our ABPS scheme. Fi-
nally, when applying our test to our two years’ worth of data, we do
not in fact find any cases exhibiting likely coordinated scanning.

4. EXTRAPOLATING GLOBAL PROPER-
TIES

We now turn to the problem of estimating a probing event’s
global scope (target size, participating scanners) based only on lo-
cal information. This task is challenging because the size of the lo-
cal sensor may be very small compared to the whole range scanned
by a botnet, giving only a very limited view of the scanning event.
For our estimation, we considered eight global properties, as shown
in Table 1.

For both uniform-random and uniform-hit-list scanning, the uni-
formity property enables us to consider the local view as a random
sample of the global view. Thus, the operating system (OS), au-
tonomous system (AS), and IP prefix distributions observed in local
measurements provide an estimate of the corresponding global dis-
tributions (bottom three rows). However, we need to consider that
if bots exhibit heterogeneity in their scanning rates, then the prob-
ability of observing a bot decreases for slower-scanning ones. The
scanning rate heterogeneity mentioned above introduces a bias to-
wards the faster bots in the population for these distributional prop-
erties. By extrapolating the total number of bots, however, we can
roughly estimate the prevalence of this effect. It turns out that in
all of our analyzed events, we find that more than 70% of the bots
appear at the local sensor3 by comparing the number of bots seen
at the local sensors with the extrapolated global bot population as
shown in Table 6. Thus, the bias is relatively small.

The “coverage hit ratio” gives the percentage of target IP ad-
dresses scanned by the botnet. As this metric is difficult to esti-
mate for hit-list probing, we mainly consider uniform scanning, for
which certain destinations are not reached due to statistical varia-
tions. For uniform scanning, we can directly estimate this metric
based on the coverage seen in our local sensor.

In the remainder of this section we focus on how to estimate the
four remaining properties, each of which requires indirect extrapo-
lation.

4.1 Assumptions and Requirements
To proceed with indirect extrapolation, we must make two key

3The high percentage of bots appearing at the local sensor arises
due to the fact that probing events continue long enough to expose
majority of the bots.

Approach Property name Affected Require IPID
by botnet or port #
dynamics continuity

Both # of bots No No

Approach I
Global target scope No Yes
Total # of scans No Yes
Average scan speed per bot Yes Yes

Approach II
Global target scope Yes No
Total # of scans Yes No
Average scan speed per bot Yes No

Table 2: Additional assumptions and requirements.

assumptions:
1 The attacker is oblivious to our sensors and thus sends

probes to them without discrimination. This assumption is
fundamental to general honeynet-based traffic study, (cf. the
probe-response attack developed in [9] and
counter-defenses [10]). A general discussion of the problem
is beyond the scope of this paper. However, since we assume
our technique is mainly used by a single enterprise or a set
of collaborating enterprises, we need not release sensing
information to the public, which counters the basic attack
in [9]. With this assumption, we can treat the local view as
providing unbiased samples of the global view.

2 Each sender has the same global scan scope. This should be
true if all the senders are controlled by the same botmaster
and each sender scans uniformly using the same set of
instructions.

We argue that these two fundamental assumption likely apply to
any local-to-global extrapolation scheme. In addition, we check
for one general requirement before applying extrapolation, namely
consistency with the presumption that each sender evenly dis-
tributes its scans across the global scan scope. This requirement
is valid for the dark regions shown in Figure 4 (Section 3 above),
i.e., both uniform random scanning and random permutation scan-
ning, regardless of whether employing a hit-list. Therefore, prior to
applying the extrapolation approaches, we test for consistency with
uniformity (via methodology discussed in Section 3), which many
of the botnet scan events pass (80.3%).

There are some additional requirements specific to certain ex-
trapolation approaches, as listed in Table 2. Botnet dynamics,
such as churn or growth, can influence certain extrapolation ap-
proaches. Accordingly these approaches work better for short-lived
events. Approach I, as discussed in section 4.3, requires continu-
ity of the IP fragment identifier (IPID) or ephemeral port, which
holds for botnets dominated by Windows or MacOS machines (in
our datasets we found all the events are dominated by Windows
machines). We use passive OS fingerprinting to check whether we
can assume that this property holds.

4.2 Estimating Global Population
Table 3 shows the notation we use in our problem formulation

and analysis, marking estimates with “hat”s. For example, ρ̂ repre-
sents the estimated local over global ratio, i.e., ratio of local sensor
size comparing to the global target scope of the botnet event, and
Ĝ represents the estimated global target scope.

If ρ is small, many senders may not arrive at the sensor at all.
In this case, we cannot measure the total bot population directly.
Instead, we extrapolate the total number of bots as follows. With
the uniform scan assumption discussed above, we have:

m1

M
=

m12

m2
(1)

based on the following reasoning. We can split the address range of
the sensor into two parts. Since the senders observed in each part
are independent samples from the total population M , Equation 1
follows from independence. For example, suppose there are total



T Event duration observed in the local sensor
d Size of the local sensor
G Size of global target scope
ρ Local over global ratio d/G
M Total # of senders in the global view in T
m Total # of senders in the local view in T
m1 # of senders in the first half of the local view in T
m2 # of senders in the second half of the local view in T
m12 # of overlapped senders of m1 and m2 in T
R Average scanning speed per bot
RGi Global scanning speed of bot i
Ti Time between first and last scan arrival time from bot i
ni Number of local scans observed from bot i in T
∆tj Inter-arrival time between the j and j + 1 scans
Q Local total # of scans in T

Table 3: Table of notations.
M = 400 bots. In the first half sensor, we see m1 = 100 bots,
which is 1/4 of the total bot population. Consider the second half
as another independent sensor, so the bots it observes form another
random sample from the total population. Then we have a 1/4
chance to see if there is a bot already seen in the first half. If the
second half observes m2 = 100 bots too, the shared bots will be
close to m12 = 100/4 = 25. Since in Equation 1 we can directly
measure m1, m2, and m12, we can therefore solve for M , the total
number of bots in the population. This is a simple variation of
a general approach used to estimate animal populations known as
Mark and Recapture. Since the m1,m2 and m12 are measured at
exactly the same time window4, the estimated total population M
is the number of bots of the botnet in the time window.

4.3 Exploiting IPID/Port Continuity
We now turn to estimating the global scan scope. We investi-

gated two basic strategies: first, inferring the number of scans sent
by sources in between observations of their probes at the Honeynet
(Approach I); second, estimating the average bot global scanning
speed using the minimal inter-arrival time we observe for each
source (Approach II, covered in the next section).

Approach I is based on measuring changes between a source’s
probes in the IPID or ephemeral port number. We predicate use
of this test on first applying passive OS fingerprinting to identify
whether the sender exhibits continuous IPID and/or ephemeral port
selection. This property turns out (see below) to hold for modern
Windows and Mac systems, as well as Linux systems for ephemeral
ports.

IPID continuity. Windows and MacOS systems set the 16-bit
IPID field in the IP header from a single, global packet counter,
which is incremented by 1 per packet. During scanning, if the ma-
chine is mainly idle, and if the 16-bit counter does not overflow,
we can use the difference in IPID between two observed probes
to measure how many additional (unseen by us) scans the sender
sent in an interval. (The algorithm becomes a bit more complex
because of the need to identify and correct IPID overflow/wrap, as
discussed below. We also need to take into account the endianness
of the counter as present in the IP header.)

A potential problem that arises with this approach is retransmis-
sion of TCP SYN’s, which may increment the IPID counter even
though they do not reflect new scans. Thus, when estimating global
scan speed we divide by the average TCP SYN retransmission rate
we observe for the sender.

Ephemeral port number continuity. All of the botnets for
which we could inspect source code let the operating system al-
locate the ephemeral source port associated with scanning probes.
Again, these are usually allocated by sequentially incrementing a
single, global counter. As with IPID, we then use observed gaps in
4Mark and Recapture requires the “close” system assumption since
the two visits do not happen in the same time, which is different
here.

Operating System Clients
Windows 159,152 (85.2%)

Windows 2000/XP 155,869 (97.9%)
Windows 2003/Vista 231 (<.1%)
Windows NT4 1708 ( 1.07%)
Windows 98 1237 (0.7%)
Windows 95 68 (<.01%)
Windows other 39 (<.01%)

BSD 458 (0.2%)
Linux 126 (<.1%)
Novell 20 (<.01%)
Unidentified 27,047 (14.4%)
Total 186,725

Table 4: Aggregate operating system distribution, from passive
OS fingerprinting of probing events.

this header field to estimate the number of additional scans we did
not see. (In this case, the logic for dealing with overflow/wrapping
is slightly more complex, since different operating systems confine
the range used for ephemeral ports to different ranges. If we know
the range from the fingerprinted OS, we use it directly; otherwise,
we estimate it using the range observed locally, i.e., the maximum
port number observed minus the minimum port number observed.)

IPID and ephemeral port number continuity validation. In
a controlled experimental environment, we installed five versions
of Windows, one of MacOS X, and two versions of Linux, each in
a different virtual machine. We then ran Nmap on each to gener-
ate scans, confirming that all but Linux (2.4/2.6) exhibit continu-
ity of IPID (with Win98 and NT4 incrementing it little-endian, but
Win2000, WinXP, Win2003, and MacOS X using network order)
and that all 8 systems allocated the ephemeral ports sequentially.

As shown in Table 4, for all the probing events in the two-year
Honeynet dataset, OS fingerprinting (via the p0f tool) indicates
that the large majority of bots run Windows 2000/XP/2003/Vista
(85%), enabling us to apply both IPID and ephemeral port number
based estimation. From this analysis, we also know that the propor-
tion of Windows 95/98/NT4 is very low (0.8%), and only for those
cases do we need switch the byte order. (These percentages match
install-based statistics [5] indicating that Win98 and NT4 comprise
less than 1.5% of systems overall.)

NAT effects on IPID and ephemeral port continuity. Since
NATs can potentially alter IPID and ephemeral ports, we test three
popular home routers in this regard—Linksys, Netgear and D-Link,
which comprise more than 70% of the home router market [1]. We
use Nmap to send the scans from hosts behind these NATs and
examine whether their IPID or ephemeral ports changed. For all
three, IPID remains unchanged, and for a single scanner behind
the NAT, the ephemeral port also remains unchanged. For multiple
scanners behind the NAT, the ephemeral port numbers of the first
sender remain unchanged, though for the D-Link router the ports
of additional scanners become arbitrary.

Even though IPID remains unchanged, the intermingling of mul-
tiple IPID sequences for a single apparent source address renders
simple extrapolation of scanning speed impractical. Techniques ex-
ist for detecting the presence of multiple sources behind a NAT
(also based on IPID), but these require observing a large portion of
the traffic coming out of the NAT [8], which is impractical in our
case. However, given that we usually have a large number of dis-
tinct sources, we can restrict our analysis to those cases that exhibit
strong linearity for either IPID or ephemeral port numbers, which
avoids conflating patterns in these arising from multiple sources
aliased to the same public IP address. In our evaluation, we find
that on an average 463 senders maintain linearity in IPID and/or
ephemeral port numbers for an event; thus, they can be used for
extrapolation purpose.

Global scan speed estimation. As the IPID and ephemeral port
number approaches work similarly, here we discuss only the for-



mer. We proceed by identifying the top sources originating in at
least four sets of scanning. We test whether (after overflow recov-
ery) the IPIDs increases linearly with respect to time, as follows.
First, for two consecutive scans, if the IPID of the second is smaller
than the first, we adjust it by 64K. We then try to fit the corrected
IPIDi and its corresponding arrival time ti, along with previous
points, to a line. If they fit with correlation coefficient r > 0.99, it
reflects consistency with a near-constant scan speed, and the sender
is a single host rather than multiple hosts behind a NAT. When this
happens, we estimate the global speed from the slope.

It is possible that multiple overflows might occur, in which case
the simple overflow recovery approach will fail. However, in this
case the chance that we can still fit the IPIDs to a line is very small,
so in general we will discard such cases. This will create a bias
when estimating very large global scopes, because they will more
often exhibit multiple overflows.

Sources that happen to engage in activity in addition to scan-
ning can lead to overestimation of their global scan speed, since
they will consume IPID or possibly ephemeral port numbers more
quickly than those that might be simply due to the scanning. To
offset this bias, when we have both IPID and ephemeral port esti-
mates, we use the lesser of the two. Furthermore, in our evaluation,
for the cases where we can get both estimates, we check the consis-
tency between them, and found that IPID estimates usually produce
larger results, but more than 95% of the time within a factor of two
of the ephemeral port estimate. (Clearly, IPID can sometimes ad-
vance more quickly if the scanner receives a SYN-ACK in response
to a probe, and thus returns an ACK to complete the 3-way hand-
shake.)

Global scan scope extrapolation. With the ability to estimate
the global scan speed, we finally estimate the global scan scope.
Since we know the local scope, the problem is equivalent to es-
timate the local over global ratio ρ. Suppose in a probing event
there are m senders seen by the sensor, for which we can estimate
the global scan speeds RGi of a subset of size m′. For sender i
(i ∈ [m′]), we know Ti (duration during which we observe the
sender in the Honeynet) and ni (number of observed scans). We
use the linear regression with correlation coefficient r > 0.99 (as
we discussed before) to estimate the RGi which is also quite ac-
curate. The main estimation error comes from variation of the
observed ni from its expectation. Define ρ̂i = ni

RGi·Ti
for each

sender. Sender i’s global scan speed is RGi. Globally during Ti, it
sends out RGi · Ti scans. ni is the number of scans we see if we
sample from RGi · Ti total scans with probability ρ. Therefore, ρ̂i

is an estimator of ρ. If we aggregate over all the m′ senders, we get

ρ̂ =

Pm′

i
ni

Pm′

i
RGi · Ti

(2)

As show in Appendix C, we formally prove that ρ̂ is an unbiased
estimator of ρ, and it is more accurate than ρ̂i, which only reflects
a single sender. We then can use ρ̂ to estimate the global scope a
probe targeted.

Average Scan Speed Per Bot. After extrapolating ρ and M , we
estimate the average scan speed per bot using:

Q

R · T · M
= ρ (3)

Here Q is the number of scans received by the sensor in time T ,
which should reflect a portion ρ of the total scans. We estimate the
total scans by R ·T ·M , where R is the average scan speed per bot.
This formulation assumes that each bot participates in the entire
duration of the event, which is more likely to hold for short-lived
events.

Limitations. Note that both of the above techniques can fail if
attackers either craft raw IP packets or explicitly bind the source
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Figure 6: Top 30 estimate speeds of Event VNC-060729.

port used for TCP probes. Thus, the schemes may lose power in
the future. However, crafting raw IP packets and simulating a TCP
stack is a somewhat time consuming process, especially given most
bots (85+%) we observed run Windows, and in modern Windows
systems the raw socket interface has been disabled. Empirically, in
our datasets we did not find any case for which the techniques did
not appear to apply.

4.4 Extrapolating from Interarrival Times
For Approach II, we estimate global scanning speed (and hence

global scope, via estimating ρ from an estimate of R using Equa-
tion 3) in a quite different fashion, as follows. Clearly, a sender’s
global scan speed s provides an upper bound on the local speed we
might observe for the sender. Furthermore, if we happen to observe
two consecutive scans from that sender, then they should arrive
about ∆t = 1/s apart. Accordingly, the minimum observed ∆t
gives us a lower bound on s, but with two important considerations:
(i) the lower bound might be too conservative, if the global scope
is large, and we never observe two consecutive scans, and (ii) noise
perturbing network timing will introduce potentially considerable
inaccuracies in the assumption that the observed ∆T matches the
interarrival spacing present at the source.

We proceed by considering all m senders we observe, other than
those that sent only a single scan. We rank these by the estimated
global scan rate they imply via ŝ = 1/∆̂t, where ∆̂t is the min-
imum observed interarrival time for the sender. Naturally, fast
senders should tend to reflect larger estimated speeds, which we
verified by comparing ∆̂t of each sender with how many scans we
observed from it. We find that generally the correlation is clear
though with considerable deviations.

Using the fast senders’ speeds to form an estimate of the aver-
age scanning speed may of course overestimate the average speed.
On the other hand, our technique aims at estimating a lower bound.
Thus, it is crucial to find a balanced point among the possible esti-
mates. We do so by presenting the different sorted estimates from
which the analyst chooses the “knee” of the resulting curve, i.e., the
point with smallest rank k for which an increase in k yields little
change in s. Figure 6 shows an example, plotting the top 30 maxi-
mum estimated speeds of Event VNC-060729. From the figure we
would likely select k = 6 as the knee, giving an estimated speed
8.26.

5. EVALUATION
We evaluate our techniques using the honeynet traffic described

in Section 2.1. The total data spans 24 months and 293 GB of
packet traces. Since the extrapolation algorithms we use are linear
in the number of scans in the events, we find that our system takes
less than one minute to analyze the scan properties and perform
the extrapolation analysis for a given event. We use SNR= 50 and
a tail parameter ω = 5 for event extraction (ranging ω from 3 to
8 yields identical results). We extract 203 botnet scan events and
504 misconfiguration events. There were a few moderate worm
outbreaks observed during the period, such as the Allaple worm [4].



Targeted # of kinds of Events
Service vul./probes
NetBIOS/SMB/RPC 7 81
VNC 1 39
Symantec 1 34
MS SQL 1 14
HTTP 2 13
Telnet 1 12
MySQL 1 6
Others 4 4
total 18 203

Table 5: The summary of the events

The misconfiguration events are mainly caused by P2P traffic. In
this paper, we focus on the botnet scan events.

We first present characteristics of the botnet scanning events.
Then we present the botnet event correlation study. Next we dis-
cuss results for the four botnet scan pattern checking techniques
and their validation. We finish with the presentation of global ex-
trapolation results and their validation using DShield, a world-wide
scan repository.

5.1 Basic Characteristics of the Botnet Events
In Table 5, we break down 203 events according to their targeted

services. We find that most of the events target popular services
that have large install-base. We also find that 30 (14.8%) events are
purely port reconnaissance without any payloads. Another three
events check whether the HTTP service is open by requesting the
homepage. The remaining (83.7%) events target certain vulnera-
bilities. Therefore, these botnet scans likely reflect attempted ex-
ploitations.

Figure 7 shows the CDF of event duration. A botnet event can
last from a few minutes to a few days. There are 36 events that
last very close to half an hour, leading to the spike in the Figure 7.
As we will discuss in Section 5.2, it is a cluster of events which
scan the same vulnerability every half hour over and over again, for
days on end. Most likely these botnet events are driven by a single
botmaster. From Figure 8, we also find that the number of sources
involved in a botnet event is quite heterogeneous. In Figure 9, we
show the CDF of unique number of ASes per event. Most of the
bots (62.7%) come from more than 100 ASes. Only 3% of events
reflect fewer than 20 ASes. This implies that cleaning the botnets
from some part of the world (some of ASes) will not improve the
situation. Also blocking them based on AS number is very hard due
to large number of ASes involved. We also find that the number of
destinations a bot scans differs significantly for different events, as
show in Figure 10.

We further study the OS, AS and IP distribution of the events.
Table 4 in Section 4 shows the aggregated OS distribution. We see
that Microsoft Windows is the most popular OS, with more than
83% of bots using Windows 2000/XP. (We see similar results when
analyzing individual events.) For AS and IP address distribution,
we find that the aggregated results (203 events together) are close
to those seen in previous work [25]. However, we find very large
variation across individual events; thus, address blacklists derived
from one event might not be effective when defending against other
events.
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Figure 10: Avg. # Destinations
/ Source.
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Figure 11: A subset of the cluster of 36 events which all target
a same vulnerablity in SMB. The number on an edge labels the
percentage of bots sharing.

5.2 Event Correlation
We study the temporal and source (bot IP address) correlation

of different events. In this context, if we find two events that have
more than 20% source addresses in common, we consider them as
correlated. We calculate the percentage of sharing as the maximum
of the shared addresses over total addresses of two events. We ob-
serve two types of interesting behavior:

Behavior 1: The botmasters ask the same botnet to scan the same
vulnerability repeatedly. In our two years of data, we find several
event clusters that exhibit this behavior. For example, there is a
cluster of 36 events that occur every day, always scanning the same
SMB vulnerability. These events form a nearly complete clique,
i.e., each event shares ≥ 20% of the same source addresses in com-
mon with most of the other events. In Figure 11, we show a subset
of this commonality graph. These events on average share about
35% of the same sources. Each event occurs on a different day. We
speculate this activity reflects the botmaster commanding the same
botnet to re-scan the same address range repeatedly.

Behavior 2: The botmasters appear to ask most of the bots in a
botnet to focus on one vulnerability, while choosing a small sub-
set of the bots to test another vulnerability. Apart from these big
clusters, we find there are some cases in which two events has very
high correlation (more than 80% of source address commonality),
and occur very close in time, usually the same day. We find that
often the first event is much larger in terms of the number of bots
than the second; the second is just a small subset of the bots from
the first. This behavior illustrates that the difficulty of fingerprint-
ing botnet activity, given that botmasters may select a subset of bots
to assign to different tasks.

5.3 Property-Checking Results
Figure 12 shows the breakdown of the events along different

scanning dimensions. Six of the 203 events exhibit partial mono-
tonic trends; 16.3% reflect hit-lists; 80.3% follow the random-
uniform pattern, passing both uniformity and independence tests.

Through manual inspection of the partial monotonic events, we
find that nearly half of the bots scan randomly and another half of
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Figure 12: Scan Pattern checking results.

bots scan sequentially. All of these bots start to scan at almost the
same time. Perhaps they reflect two groups of bots controlled by the
same botmaster, and the botmaster asking these two groups to use
different scan strategies; but in general, this behavior is puzzling.

After that, we test the use of liveness-aware scanning (which we
term “hit-lists”). As mentioned above, we use θ (the ratio of the
number of senders in the darknet over to those of the live honeynet)
as the metric to classify the events. Out of the 106 events classified
by port number, 34 reflect hit-list scanning when using θ = 0.5. In
fact, all have empirical values for θ < 0.01, and all of events with
θ > 0.5 have θ > 0.85. The 97 other events use popular ports also
seen in background radiation, and thus we have to classify them
based on application-level behavior. For these, we conservatively
assume that all the senders in the darknet using the same port num-
ber is possible members of the event, which tends to overestimate
θ. For these 97 events, we did not find any with small θ and most of
them have θ larger than one. We found in all the cases, the results
are insensitive to the threshold of θ. In addition, none of the events
only target the darknet.

date desc ex. DShield scope ex.
2006 scope scope ratio scope

(I)(/8) (/8) (I) (II)(/8)
08-25 MSSQL 1.48 1 1.48 4.6
11-26 Symantec 0.59 0.75 0.79 0.1
11-27 Symantec 0.76 1 0.76 0.4
11-28 Symantec 0.92 1 0.92 4.0
07-23 VNC 0.63 0.9 0.7 0.9
07-29 VNC 0.63 0.87 0.72 0.9
10-31 VNC 0.80 0.80 1 0.6
08-24 NetBIOS 0.86 1 0.86 3.5
08-25 NetBIOS 1.13 1 1.13 2.5
08-29 NetBIOS 0.89 1 0.89 0.5
09-02 SMB 0.67 0.50 1.34 0.5
07-26 SMB 0.82 1 0.82 4.3

Table 6: Global scope extrapolation results and validation (ex.
denotes extrapolated; DShield denotes the validation results us-
ing DShield data.).

34 of the 197 random events fail the test for uniformity. We vi-
sually confirm that all of the remaining 163 events passing the test
indeed appear uniform. Three of those that failed appear uniform
visually, but have very large numbers of scans, for which the statis-
tical testing becomes stringent in the presence of a minor amount
of noise. In the remaining failed cases, we can see “hot-spot” ad-
dresses that clearly attract more activity than others; we do not
know why.

Finally, we test the 163 uniform cases for coordination, not find-
ing any instances at a 0.5% significance level. In addition, we simu-
late the advanced botnet permutation scan (ABPS), and find the de-
pendency test can accurately detect it even with 0% ∼ 20% packet
loss. Thus, none of the scanning we observe appears to reflect any
significant degree of coordination.

5.4 Extrapolation Evaluation and Validation
We validate two forms of global extrapolation—global scan

scope and total number of bots—using data from DShield [27], a

very large repository of scanning and attack reports.
Finding: 75% of our estimates of global scanning scope us-

ing only local data lie within a factor of 1.35 of estimates from
DShield’s global data, and all within a factor of 1.5.

Finding: 64% of bot population estimates are within 8% of rel-
ative errors from DShield’s global data, and all within 27% of rel-
ative errors

For 163 uniform events, 135 reflect independent uniform scan-
ning and 28 reflect hit-list scanning. For each type we estimate
either the total scanning ranges or the total size of the hit lists, re-
spectively. It is difficult to verify hit-list extrapolations because of
the difficulty of assessing how the hit-list will align with sources
that report to DShield. However, we can validate extrapolations
from the first class of events since we find they usually target a large
address range. Due to limited data access to DShield, we have only
been able to verify 12 cases as of today, as shown in Table 6.

5.4.1 Global Scope Extrapolation and Validation.
Global scope extrapolation results: In Table 6, we show the ex-
trapolated scan scope we estimate from the local honeynet compar-
ing with the estimation we make with the DShield data. Column
ex. scope (I) shows the honeynet extrapolated scan scope by Ap-
proach I. Column DShield scope shows the DShield based estima-
tion. Column scope ratio gives the ratio of the honeynet extrapo-
lated scan scope by Approach I over the DShield scope. Column
ex. scope (II) shows the extrapolated scan scope by Approach II.
From the results, we see that our findings are consistent with those
derived from DShield. Next, we introduce how the DShield valida-
tion works, and then we will analyze the accuracy of our results.
Validation Methodology: We find that most DShield sensors ap-
pear to have synchronized clocks (i.e., we often find significant
temporal overlap between our honeynet events and corresponding
DShield reports). For a given extraplation, we take two steps for
validation. First, since the extrapolation results we got are all of
/8 size or quite close, we try to find all the /8 networks (except
those with private IP prefixes) with sufficient source overlap with
the honeynet events. Secondly, for these /8 networks, we infer the
scan scopes and compare them with our results.

Step 1. Let X denote the /8 IP prefix of our sensor. We first
calculate the number of shared senders N(X) between our event
data and scan logs for X from DShield. We consider additional
/8 prefixes Yi if their numbers of senders shared with the honeynet
N(Yi) are larger than N(X)/3, reflecting an assumption that if a
botnet uniformly scans multiple /8 prefixes, each should see quite
a few sources in common. For X and each Yi, we select the full
width at half maximum (FWHM) of the unique source arrival pro-
cess as a (conservative) way to delineate the global interval of the
event. We then calculate the time range overlap with X for each
Yi; if the overlap of Yi exceeds 50% of X’s interval, we consider
that the botnet scanned X and Yi at the same time.

Step 2. After finding the scanned /8 networks, we estimate the
scan scope within each. Alternatively, we compute the ratio of sen-
sors in each network reporting the scans. There are several limi-
tations of DShield data. First, it does not contain complete scan
information (only a subset of scans within a prefix are reported).
Second, different sensors might use different reporting thresholds
and might not see all activity (e.g., due to firewall filtering). Thus
all these limitations makes calibration of data a challenging job.

To assess the limitations, we check a one-week interval around
our events to find which DShield sensors ever report a given type
of activity. We treat all the reporting sensors in one /24 network
as a single unique sensor. We count the number of sensors from
different /24 networks, denoted by Ctotal. Similarly, we count
the number of unique sensors from different /24 networks that re-
ported scans from shared senders of the given event, denoted Cest.
We reduce the noise from the DShield data by removing sensors
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Figure 13: The CDFs of the scope factors of the 12 events we
validate.

that only report a single address within a /24 sensor. We then use
Cest/Ctotal to estimate the fraction of a /8 networks scanned by the
botnet, which gives us a conservative estimate of the event’s total
range. We add up such fractions if there are multiple related /8 net-
works discovered in the first step, indicating the results in Column
DShield scope of Table 6.
Accuracy Analysis: We define the scope factor as

scope factor = max

„

DShield scope
Honeynet scope ,

Honeynet scope
DShield scope

«

The scope factor indicates the absolute relative error in the log
scale. The DShield data shows that our local estimates of global
scope exhibit a promising level of accuracy. As shown in Figure 13,
we can clearly know that, for Approach I, the scope factors of 75%
events are less than 1.35, and all of them are less than 1.5. Ap-
proach II (column ex. scope II) works less well (58% of events
are within a factor of three and 92% within a factor of six), but it
may still exhibit enough power to enable sites to differentiate scans
that specifically target them versus broader sweeps. In our two-
year dataset, we did not find any scan events specifically targeting
the research institution where the sensor resides; this fits with the
institute’s threat model, which is mainly framed in terms of indis-
criminant attacks.

5.4.2 Total Population Estimate and Validation
We assume that our honeynet event data and the corresponding

DShield scan data give us two independent samples of the bot pop-
ulation, which is another chance to use the Mark and Recapture
principle. We count the sources observed by DShield sensors of
IP prefix X on the same port number in the same time window as
the sources of DShield sensors. We term the number of sources in
common between our honeynet and DShield as the shared sources.
Based on the similar idea of Equation 1, we know the fraction of
the shared sources to the sources of DShield should be equal to the
ratio between bots observed in the honeynet and total population.
Since DShield sensors will see other scanners (constituting noise)
as well, we will likely underestimate the first fraction, and con-
sequently overestimate the bot population. Per the results shown
below, we find the estimates very close to those we estimate locally
by splitting the sensor into two halves.

Table 7. shows the extrapolation and DShield validation re-
sults. Column ex. #bots shows our bot population extrapolation
constructed by splitting the sensor into two halves. Column #bot
DShield shows the results using DShield’s global data. Column
#bots ratio gives the ratio between the two of these. Note, we
only validate the seven port number based events (MSSQL, Syman-
tec and VNC). The NetBIOS/SMB events require payload anal-
ysis, which cannot validate through DShield since it does not
provide any payloads. We find our approach is quite accurate
given 64% of cases are within 8% of relative error (|(our −
DShield)|/DShield).

5.4.3 Other Extrapolation Results
Based on Approach I, we can also infer the total number of scans

and extrapolated average scan speed of the bots in each event. In

date desc ex. #bots #bots
2006 #bots DShield ratio
08-25 MSSQL 3100 3139 0.99
11-26 Symantec 228 215 1.06
11-27 Symantec 276 373 0.73
11-28 Symantec 305 331 0.92
07-23 VNC 2752 2712 1.01
07-29 VNC 3628 3696 0.98
10-31 VNC 526 622 0.84

Table 7: extrapolated bot population results and validation.
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Figure 14: Extrapolated # of
scans.
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Figure 15: Extrapolated the
average scan speed.

Figure 14, we show the extrapolated total number of scans, using
a log-scaled X axis. We can see the number of scans sent by the
events could differ significantly given the duration and the number
of bots in each event differ. In Figure 15, we show the extrapolated
average scan speed of the bots.

6. RELATED WORK
The work that most heavily influences us is the vision paper

of Yegneswaran and colleagues on “Internet situational aware-
ness” [30]. Their work outlines the general problem of analyzing
honeynet traffic to assess its significance for the site observing it.
The authors present the potential promise of such analysis using
techniques that rely considerably on visualization. In this work, we
aim to go substantially further, developing a “toolkit” for analyz-
ing particular features of large-scale honeynet events, and devis-
ing techniques and a general framework to automatically or semi-
automatically derive conclusions based on honeynet data.

DShield is the Internet’s largest global alert repository [27]. The
advantages of our approach comparing with DShield are as follow:
(i) In our experience, DShield data is quite noisy, and the sensor
density quite non-uniform. These lead to cases where it is difficult
to develop sound inferences from the data. (ii) DShield is subject
to pollution and avoidance [9]. Depending solely on DShield might
not be reliable for operational security. (iii) When the target scope
is small, it is hard to find other sensors in DShield which share the
same behavior; thus DShield will fail to work in such cases.

While the state of the art in terms of building honeynet systems
has advanced considerably, the analysis of large-scale events cap-
tured by such systems remains in its early stages. The Honeynet
project has developed a set of tools for host-level honeypot analy-
sis [2]. At the network level, Honeysnap [3] analyzes the contents
of individual connections, particularly for investigating IRC traffic
used for botnet command-and-control. These approaches all ei-
ther focus on single instances of activity, or on study of particular
botnets over time (e.g., [24]). In contrast, in this paper, we aim in-
stead to understand the significance of single, large-scale events as
seen by honeynets. Such activity by definition entails analysis in-
tegrated across a large number of instances of the activity, but also
(unlike [24]) localized in time.

Furthermore, the literature includes a number of forensic
case studies analyzing specific large-scale events, particularly
worms [16, 20]. Such case studies have often benefited from a pri-
ori knowledge of the underlying mechanisms generating the traffic
of interest. For our purposes, however, our goal is to infer the mech-
anisms themselves from a starting point of more limited knowl-
edge.



Finally, Gu et al.propose a series botnet detection techniques
based on behavior correlation [12, 13]. In contrast, we focus on
inferring botnet properties in the wake of detection, rather than de-
tection itself.

7. CONCLUSIONS
In this paper we present several algorithms that can automati-

cally analyze and determine the features of large-scale events that
give insight into their underlying nature observed at a honeynet. In
particular, we develop techniques for recognizing botnet scanning
strategies and inferring a distributed scan’s global properties. An
evaluation of our tools using extensive honeynet and DShield data
demonstrates the promise our approach holds for contributing to
a site’s “situational awareness”—including the crucial question of
whether a large probing event detected by the site simply reflects
broader, indiscriminate activity, or instead reflects an attacker who
has explicitly targeted the site.
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APPENDIX
A. MODELING HOW BOTS SCAN
A.1 Bot Source Code Study

By analyzing the source code of five popular families of bots, we
study different dimensions of scan strategies employed by botnets.
The popularity of these five bot families is confirmed in [6, 7]. Our
findings confirm those in [7], but we more focus on scan pattern
study.



Botnet name Agobot Phatbot Spybot SDBot rxBot
Global Yes Yes Yes Yes Yes
Local Yes Yes Yes Yes Yes
Hit-list Possible Possible Possible Possible Possible
Independent
& Uniform Yes Yes No Yes Yes
Sequential No No Yes Yes Yes
# of lines 16855 21629 7371 3093 19021
Modularity Medium High Low Low High

Table 8: Botnet source code study.
Table 8 shows the scan strategies and complexity of the bot fam-

ilies. Some of them are modularly well designed. Currently, these
bot families mainly use simple scanning strategies. Each supports
both Global scanning (a specified address block) and Local scan-
ning (relative to each bot’s address). By hit-list scanning, we re-
fer to an event for which the attacker appears to have previously
acquired a specific list of targets. Such scans may heavily favor
the use of “live” addresses (those that respond) to “dark” (non-
responsive) addresses. The five bot families we analyzed do not
directly automate hit-list scanning, but an attacker can possibly
achieve this via two steps, first scanning to gather a list of live
addresses/blocks, and then specifying these at the command line.
In addition, most bot families support (uniformly) Random and Se-
quential scanning of the designated addresses or blocks.

Our dataset analysis accords with the above capabilities: most
scanners we observe use either simple sequential scanning (IP ad-
dress increments by one between scans) or independent uniform
random scanning. We do observe more sophisticated monotonic
trends (address incrementing by k), but very infrequently. We also
observe botnets using hit-list scanning quite frequently.

A.2 Modeling Botnet Global Scanning
There is a large design space for botmasters when developing

scan strategies, but we expect that the following features are usually
desired:

• Cover the target scope fully.
• Distribute the load based on bots’ capabilities.
• Low communication overhead for coordination.
• Scan detection evasion. Botmasters may want bots to avoid

aggressive scanning of a small address range, to avoid easy
detection and blocking by IDS/IPS systems.

• Redundancy. Since the bots in a botnet can readily be lost
due to detection or simply the host computer going offline,
the botmaster will prefer instructing multiple bots to scan
the same addresses.

A similar analysis is proposed in [19] for worms. Given these de-
sired features, a simple and effective approach is to ask each bot to
independently scan the specified range in a random uniform fash-
ion. Doing so can achieve the scan detection evasion, low commu-
nication overhead, and load distribution, while also providing good
coverage and redundancy. This approach is also simple to correctly
implement. Most of the events we found in our datasets are close
to uniform scanning.
Advanced Scanning Strategies.

In fact, by introducing some simple coordination between bots
one can do better than random uniform for both coverage and re-
dundancy. An advanced scanning strategy, called “worm scan per-
mutation”, was proposed in the context of worm propagation [28].
But the above strategy is optimized for worms and does not con-
sider the usage of C & C channels of botnets. Potentially, with C
& C channels botnets can achieve even better coordination. Using
the botnet C & C, we propose a better scan strategy called Ad-
vanced Botnet Permutation scan (ABPS). Each bot permutes the
whole scanning scope in the same way with a key from botmaster.

Then based on bots’ capabilities, the botmaster divides the repli-
cates of the permuted IP scope to all the bots. This can achieve
much better coverage and redundancy. We simulate and evaluate
this strategy in our evaluation.

B. PROOF OF THEOREM 1
PROOF. There are totally dn ways to distribute the n scans into

d addresses. Among them if there are X0 ways which have z0

addresses receiving zero scan (i.e., z0 empty slots). Then, we know
P (z0) = X0/dn. We will show that for a given z0 the X0 is

 

d

z0

!

× Stirling2(n, d − z0) × (d − z0)!

In d addresses, there are
`

d

z0

´

configurations to select which z0

addresses got zero scan. Each configuration has z0 addresses
which got zero scan and d − z0 addresses got non-zero scans.
Stirling2(n, m) denotes the number of ways of partitioning a set
of n element into m nonempty sets [29]. Consider after partition-
ing the n scans into d − z0 sets, we have (d − z0)! ways to map
the sets to the addresses. Therefore, for each configuration we have
Stirling2(n, d− z0)× (d− z0)! ways to distribute the n scans into
d − z0 addresses. Hence we proved

X0 =

 

d

z0

!

× Stirling2(n, d − z0) × (d − z0)!

C. PROOF OF THEOREM 2 AND 3
Proof of Theorem 2:

THEOREM 2. ρ̂ is an unbiased estimator for ρ.
PROOF.

E(ρ̂) = E(

Pm′

i
ni

Pm′

i
RGi · Ti

) =
E(
Pm′

i
ni)

Pm′

i
RGi · Ti

=

Pm′

i
E(ni)

Pm′

i
RGi · Ti

As we mentioned, ni is the number of scans we see if we sample
from RGi · Ti total scans with probability ρ, which follows a bino-
mial distribution. Hence we have E(ni) = ρ ·RGi · Ti. Therefore,

E(ρ̂) =

Pm′

i
ρ · RGi · Ti

Pm′

i
RGi · Ti

= ρ ·

Pm′

i
RGi · Ti

Pm′

i
RGi · Ti

= ρ

Proof of Theorem 3:
THEOREM 3. V AR(ρ̂) = ρ·(1−ρ)

P

m′

i
RGi·Ti

< V AR(ρ̂i), i.e., the
accuracy of ρ estimator when aggregating over all m′ senders is
higher than that of each and every single sender.

PROOF.

V AR(ρ̂) = V AR(

Pm′

i
ni

Pm′

i
RGi · Ti

) =

Pm′

i
V AR(ni)

(
Pm′

i
RGi · Ti)2

Similar as before since ni follows a binomial distribution, we have
V AR(ni) = ρ · (1 − ρ) · RGi · Ti. Therefore,

V AR(ρ̂) =

Pm′

i
ρ · (1 − ρ) · RGi · Ti

(
Pm′

i
RGi · Ti)

2 =
ρ · (1 − ρ)
Pm′

i
RGi · Ti

On the other hand,

V AR(ρ̂i) = V AR(
ni

RGi · Ti

) =
V AR(ni)

(RGi · Ti)
2

=
ρ · (1 − ρ)

RGi · Ti

Therefore, V AR(ρ̂) < V AR(ρ̂i)


