

Abstract - Both traffic metering which can measure high speed

network and data aggregating which can reduce collected data size
for fine-grained are difficulties in network passive measurement
area. For the needs of network management and IP accounting of
CERNET [15], this paper designs and implements a highly
scalable performance measurement facility: Linuxflow, which
now has become the core of passive network measurement system
deployed on CERNET backbone.
1

Index Terms - network measurement, traffic meter, high speed
networking, flow, Linux

I. INTRODUCTION

CERNET is a non-profit national foundation that provides
telecommunication and network services to universities and
other research institutions in China. It is constructed and
operated by Tsinghua and other leading universities. Up to now
CERNET has connected with 1000+ universities in China, and
has above 2.5 Gigabit PoPs.

To support the large number of users that run various types
of applications, CERNET has been using self-developed
network applications for flow-based network traffic analysis. Its
applications include: usage-based accounting and billing for
"transatlantic" traffic, network per-protocol user usage
monitoring, traffic characteristics analysis and data mining, the
detection of anomalies such as attacks, unwanted routing
asymmetries and various types of network abuses. All of these
applications need a highly scalable performance measurement
system; this results in the design and implementation of network
passive measurement facility. We call it Linuxflow.

Since 1997, the number of active IP addresses in CERNET
has been multiplied 10 times, as CERNET backbone has been
upgraded from 64K to OC3 to OC48.

Historically, CERNET has used several kinds of
measurement system. Figure 1 presents the measurement
methods by means of which CERNET can consume the
increasingly large number of traffic packets at network gateway
during last 5 years, as well as their capabilities respectively.

1 This research was supported by the Hi-Tech Research and Development

Program of China (863) and the National Natural Science Foundation Of China
under agreement numbers: 2001AA112041, 60103005.

SNMP[5][6] is a standard network management protocol.
Many network equipments support it and have its own extended
MIB. But it only can get coarse-grained data. The extended
MIB like CISCO IP Accounting table (1.3.6.1.4.9.2.4.7.1) can
have more specific IP level information used to usage-billing
system. But it can not fit high speed network.

LIBPCAP LIB is a common system-independent interface
for user-level packet capture on UNIX system. TCPDUMP is
the most famous program using the interface.
TCPDUMP/LIBPCAP is very easy to use, but can not be used
on high-speed network either [3].

Cisco NetFlow [8][9] is a flow-based network measurement
mechanism. CERNET used it on our usage-based billing system
for a long time. But if the network worms such as code-red
break out, the NDE & NFC combination will suffer severe
performance penalty. And Cisco GSR 12000 series can provide
only sampling NetFlow which can't apply to billing system.

Some hardware network measurement devices such as
OCXmon [10] and DAG [7] card can be used on very high
speed network backbone link. But these systems are more
expensive than software solution. We haven’t tested this kind of
devices in our network.

Since these techniques cannot satisfy our application's needs,
especially network usage-based billing system. We design and
implement our passive measurement system based on
Linuxflow. This facility, as the name self-explanation, is based
on Linux system. Based on the implementation of network
protocol stack in Linux kernel [12][13], we have designed a
special standalone network packet capture protocol stack, which
dedicate to packet capture. This not only can decrease the times
of context switch between kernel space and user space, but can
insert easily implemented filter and let kernel only copy the
information interesting us to user level, which provides much

Linuxflow: A High Speed Backbone
Measurement Facility

LI Zhichun, ZHANG Hui, YOU Yue, HE Tao
lizc@serv.edu.cn hzhang@cernet.edu.cn

China Education and Research Network Center (CERNET)
Tsinghua University, Beijing, P.R. China

more efficiency than LIBPCAP. Furthermore, we implement a
flow-based data aggregating program packet-to-flow, the idea
behind which is derived from IETF RTFM [1][2] and NetFlow
[8], i.e. flow-based traffic data aggregation.

In section 2, we look at the traffic collection network
environment of Linuxflow. Section 3 discusses the design and
implementation details of Linuxflow. In section 4 we consider
some experiments and practical results from the system, before
concluding this paper with a final analysis in section 5.

II. ����������� 	 ��
 � � �� �

A. Methods of sniffing
To collect traffic, we require a network interface upon

which a copy of all relevant network traffic is available. This
can be done using hub, port mirroring, or a tap mechanism.

Insert a hub in network link, all ports of the hub can get a
copy of data. This method only can be used in Megabit PoP
including 10M and 100M.

Port or interface mirroring is a technique by which the
traffic from one or more interfaces on a network switch (the
mirrored interfaces) can be copied to another port (the mirroring
interface). In theory, this provides a mechanism to transparently
observe traffic passing over the mirrored interfaces by
observing traffic over the mirroring interface.

A tap mechanism is a piece of hardware that takes a single
network input and duplicates it to transparently produce two
identical outputs. This can be thought of as an optical splitter.
This hardware works at the physical level (electrons or photons
"on the wire") by splitting a physical signal and possibly
enhancing it.

B. Traffic collection network environment
As shown in Figure 2, we can configure more than one

Linuxflow servers to sniff different network links
simultaneously and collect fine-gained flow data, and then send
resulting data to a centralized flow collection and storage server
via LFEP (LinuxFlow Export Protocol) protocol. This sever in
CERNET has a 1.2TB RAID connected to it to store flow data.
This mechanism can support different network analysis
applications, which can get data from flow storage server for
long term analysis, or can get flow data use LFEP protocol for
real-time monitoring and anomaly detecting.

III. �� �� �
 � ���� �� �

A. Linuxflow structure
Figure 3 presents our standalone network packet capture

protocol stack based on Linux 2.4.x kernel, and user space
multi-thread flow aggregation program. By using several kernel
modules, the special standalone network packet capture
protocol stack implements the protocol stack's hierarchy. User
space daemon get data from kernel, aggregate packets to flows,
assemble flows to LEFP packets and send to other collector
machine.

B. Packet capture protocol stack
Our standalone packet capture protocol stack includes three

modules in figure 2. In these modules we have used SMP and
caching techniques, such as APIC interrupt control and
multi-tasks, so they can easily and efficiently run on
high-performance Intel PC server.

� � �� � �� ��� �� ��� � � �� � ��

���������	
���

�
����������	
���

����������	
���

����������������
������
��

 ��!���	����"�!��	�"��������

������"����

#!���"����

� �� � �

�!� � ��� � � ��

" � � � � �#$ �!� �

� � � � � � ��

��� �� � �� % �� &

������
��������$�
$�
��%��	
�

� � " ' �(" �

�� %) �� �

�)� %

* + ��� �

�� � , & %

 � ��� � �' � � ��

1) Low_capture module

As we known, when a packet arrives at network interface
card, the interface triggers a hardware interrupt. In the ISR of
this interrupt, kernel calls kernel symbol netif_rx to make a
packet skbuff and send it to network protocol stack. In this
module we redefine the netif_rx kernel symbol. The packet
interface card received will not be sent to Linux standard stack,
but our special standalone packet capture stack.

Also, in this module we define our tasklet to handle the
packet sent by netif_rx, and define the cap_add_pack hook
function to bind a type of socket AF_CAPPKT.

2) AF_CAPPKT module

This module registers AF_CAPPKT protocol family to
Linux kernel, and implements the AF_CAPPKT socket. It uses
ring buffer like BPF and filters out the packet header and such
information as time-stamp from packet skbbuff data structure to

fill in the ring buffer. By calling the system call read, recvmsg
etc., user space program can get the contents of buffer as system
call return once the buffer is full.

3) Cap_type module

This module provides us with the ability to implement
different cap_type hook function to collect one or more packet
header fields and other packet properties such as time-stamp.
For example, we can define one cap_type to collect 5-tuple
(source address, destination address, source port, destination
port, and protocol type), and anther to collect all IP and TCP
header fields. This can collect different information from a
packet flexibly. The less information is collected from a packet,
the more data record a buffer will return to user space. In this
way, the program will proceed more quickly.

4) API in User Space

A program in user space that wants capture packet
information only needs to call socket function like this.

sock = socket (AF_CAPPKT, CAP_COPY_FLOW,
ntohs(ETH_P_IP)) ;

It can use read or recvmsg to read buffer which contain
packet information structure defined in cap_type.

C. Multi-thread flow aggregation program
Multi-threading provides program with the ability to run on

different architectures, ranging from microprocessor to
mainframe to supercomputer, and the ability to buffer more data
from kernel. This decreases the possibility of losing packet data
from queueing theory’s point of view [4].

The program has three threads: one for reading packet data
buffer from kernel, another one for processing packet data to
flow record, the last one for assembling flow record into LEFP
UDP packet and sending it to other machines for further
analysis.

The flow definitions in [14] [11] [8] [2] differs a little. In
this paper we identify the flow using the classical 5-tuple
(source address, destination address, source port, destination
port, and protocol type) definition and flow is bi-directional
packets stream. This definition is much more like the streams
concept defined in [1], which is individual IP session (e.g. TCP
or UDP) between ports on pairs of hosts.

A major issue is to determine when a flow has terminated.
We defined two types of timeout for a flow, active timeout and
inactive timeout. If a flow meets following conditions we think
of it as being terminated.

� Flows which have been idle for a specified time (inactive
timeout) are expired and removed from the flow table.

� Long lived flows are reset and exported from the flow
table, when they have been active for a specified time
(active timeout). The consecutive packets of a long lived
flow which has been exported will make up a flow with a
cont flag, this can notify collector "I am not a new one".

� TCP connections which have reached the end of byte
stream (FIN) or which have been reset (RST)

In processing thread hashing algorithm is used to aggregate
packets information to flows. When flows are expired, they will
be exported to send buffer, where sending thread assembles
flows to LEFP packet. We defined the LEFP, i.e. LinuxFlow
Export Protocol to send the flow records to destination machine
for analysis. The LEFP uses UDP protocol, and the packet
format is shown as figure 4.

IV. PERFORMANCE EVALUATION

A. Linuxflow performance and accuracy test
1) Experimental environment

We use CERNET-CHINANET (china telecom) Gigabit
interconnection backbone link as our test link. This link
interconnected the biggest research network and biggest
commercial network in China.

The test used an Intel server features as follows.

Processor PIII XEON 700Mhz × 4
Memory 16GB DRAM
Accessory 64-bit/64MHz
Disk 35GB SCSI disk × 2
Network Card Intel 1000BaseSX × 2

Table 1. Parts of the test machine
Linuxflow measurement system runs on RedHat 6.2 with

self-configured kernel 2.4.17.

2) Experimental Dimensions

In this test, we have studied the relationship between the
CPU load and the network packet rate/network bandwidth.
From experiments we find the CPU load is mainly depended on
the packet rate. Same packet rate with different network
bandwidths (this means the packet length is different) leads to
the almost same CPU load.

In accuracy experiment, we use sampling test method. With
different network bandwidths, we transport same traffic
between a point in CERNET and another point in CHINANET.
By comparing what we send with what our measurement system
gets, we can calculate the collecting ratio.

3) Experimental Results

The experimental result is shown in figure 5

0 50000 100000 150000 200000 250000
0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100
Packets/s

C
P

U
 L

oa
d(

%
)

co
lle

ct
in

g
ra

tio
(%

)
 Linuxflow CPU Load

Figure 5 Linuxflow performance & accuracy curve
Bandwidth Utilization(Mbit/s)

Linuxflow traffic collecting ratio

B. Compared with TCPDUMP and LIBPCAP API program.
TCPDUMP/LIBPCAP can't aggregate packet information

to flow. So we only compare AF_CAPPKT to
TCPDUMP/LIBPCAP.

Experiment is taken on CERNET-Internet OC3
international link. The test machine is a dual PIII 933MHz
processors with 2GB DRAM, and a 3COM Gigabit Ethernet
card to listen both direction of the link.

The packet loss ratio of TCPDUMP run on standard mode is
more than 20%, so it can not pass the test. So we write a
program based on LIBPCAP in our own. This test program is
compared with another test program written based on
AF_CAPPKT. Both test programs only do one thing: get each
packet’s IP header. Since LIBPCAP is a portable lib, it can run
on different variants of UNIX. So we test the program on Linux
and FreeBSD.

The experimental result is shown in table 2.

Program lpftest pcaptest pcaptest

OS Platform Linux 2.4.17 Linux 2.4.17 FreeBSD4.4

Accuracy 99.8% 99.6% 99.9%

CPU Load 1% 16% 15%
Table 2: testing results

C. Graphical presentation on CERNET
Graphs such as shown in figure 6 are generated hourly using

our PHP graph interface.

Figure 6. Web monitoring graph

V. CONCLUSION

We have designed and implemented a flow-based highly
scalable performance measurement facility, Linuxflow. It
includes a special standalone packet capture protocol stack and
a flow-based multi-thread aggregation program.

We have proven its capability of handling gigabit network
backbone not only by special tests, but also by the fact that it has
been used on CERNET backbone.

Flow based network measurement system has provided
significant benefit to CERNET. It enabled the usage-based
billing scheme; it let us know what traffic transported on our
network, and detect anomalies on our network.

In the future we may make Linuxflow more suitable to the
current standard [14]. And we plan to use clustering techniques
to make it more scalable and powerful.

Moreover, we are building our IDS systems and traffic data
mining systems based on this measurement facility.

REFERENCES
[1] Nevil Brownlee, Margaret Murray. Streams, Flows and Torrents

PAM2001
[2] Nevil Brownlee, Network Management and realtime Traffic Flow

Measurement, pp 223-227, Journal of Network and Systems Management,
Vol 6, No 2, 1998

[3] Eric Weigle, Wu-chun Feng. TICKETing High-Speed Traffic with
Commodity Software and Hardware PAM2002

[4] L. Kleinrock, Queueing Systems, vol.1 & vol.2, John-Wiley, 1975/1976
[5] Case JD,Fedor M,Schoffstall M Letal. Simple Network managerment

protocol(SNMP) RFC 1157 , 1990. http://www.ietf.org/rfc/rfc1157.txt
[6] J. Case,K. McCloghrie,M. Rose,S. Waldbusser Management Information

Base for version 2 of the Simple Network Management Protocol
(SNMPv2) 1993. http://www.ietf.org/rfc/rfc1450.txt

[7] The DAG project, http://dag.cs.waikato.ac.nz.

[8] White Paper NetFlow Services and Applications Cisco Corp. 2000
http://www.cisco.com/warp/public/cc/pd/iosw/ioft/neflct/tech/napps_wp
.htm

[9] NetFlow Services Solutions Guide Cisco Corp. 2001
http://www.cisco.com/univercd/cc/td/doc/cisintwk/intsolns/netflsol/nfw
hite.htm

[10] Joel Apisdorf,k claffy,Kevin Thompson. OC3MON: Flexible, Affordable,
High-Performance Statistics Collection http://www.isoc.org/inet97

[11] K.C. Claffy, H.W. Braun, G.C. Polyzos, A parameterizable methodology
for Internet traffic flow profiling, IEEE JSAC 1997

[12] Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel.
O’Reilly Press 2000

[13] Alessandro Rubini Linux Device Drivers, 2nd Edition O’Reilly Press
2001

[14] Internet-Drafts: Architecture Model for IP Flow Information Export
[15] CERNET www.edu.cn

