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ABSTRACT
Given a large number of low-quality heterogeneous categorical

alerts collected from an anomaly detection system, how to charac-

terize the complex relationships between different alerts and deliver

trustworthy rankings to end users? While existing techniques focus

on either mining alert patterns or filtering out false positive alerts,

it can be more advantageous to consider the two perspectives si-

multaneously in order to improve detection accuracy and better

understand abnormal system behaviors. In this paper, we propose

CAR, a collaborative alert ranking framework that exploits both

temporal and content correlations from heterogeneous categorical

alerts. CAR first builds a hierarchical Bayesian model to capture

both short-term and long-term dependencies in each alert sequence.

Then, an entity embedding-based model is proposed to learn the

content correlations between alerts via their heterogeneous categor-

ical attributes. Finally, by incorporating both temporal and content

dependencies into a unified optimization framework, CAR ranks

both alerts and their corresponding alert patterns. Our experiments

— using both synthetic and real-world enterprise security alert data

— show that CAR can accurately identify true positive alerts and

successfully reconstruct the attack scenarios at the same time.

CCS CONCEPTS
• Information systems → Data mining; Enterprise information
systems; • Security and privacy → Intrusion detection sys-
tems; •Computingmethodologies→Anomaly detection; Tem-
poral reasoning; Dimensionality reduction and manifold learning;
Unsupervised learning;
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1 INTRODUCTION
In modern information systems or cyber-physical systems — such

as enterprise networks, OT/IoT systems, and data centers — a sig-

nificant challenge is to understand the behavior of the system based

on the massive data collected [6, 25]. By identifying underlying

anomalies or irregular patterns [6, 7], critical actionable informa-

tion can be extracted to facilitate human decisions and mitigate

potential damage. Towards this end, a variety of anomaly detection

engines (e.g., [4, 20, 22]) have been developed to provide in-depth

protections in various information systems.

Due to the overwhelming scale and complexity of real-world

systems, however, these automated detection engines are notorious

for generating high rates of false alarm [2, 30]. According to a re-

cent study conducted by FireEye, most organizations receive 17, 000

alerts per week and more than 51% of them are false positives and

only 4% of the alerts are actually get investigated [13]. Due to the

enormous amount of alerts, important alerts get lost easily in the

noise of unimportant alerts and system analyst/administrators face

“alert fatigue”. This not only poses significant challenges to end-

users in performing effective analysis and initiating the timely re-

sponse, but can also suffer from prevalent false positive alerts, lead-

ing to unnecessary system interventions or suspensions. Therefore,

it is particularly important to build trustworthy post-processing

systems to reduce false positives from massive raw alerts, intel-

ligently correlate different alerts, and uncover interpretable alert

patterns for a better understanding of system irregularities.

Building an efficient alert post-processing system can be quite

challenging for several reasons. First, most anomaly detection en-

gines focus on low-level interaction/events (e.g., a process accesses
a sensitive file) and generate isolated alerts, while a system’s ab-

normal behaviors are typically high-level activities composed of

multiple low-level events/steps [12]. For example, in an enterprise

security system, a well-known network attack called Advanced
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Figure 1: An example of APT attack

Persistent Threat (APT), as shown in Fig. 1, includes a sequence of

computer hacking processes. Usually, the first attempt is to gain

a foothold in the environment. Then, it uses the compromised

systems as access to the target network, which is followed by de-

ploying additional tools to fulfill the attack. Thus, it can be difficult

to identify truly relevant processes/alerts to the attack by look-

ing at them independently. Second, the multi-modal and nonlinear

correlations between alerts further exacerbate the problem. Alerts

can demonstrate complex inter-relations either in the temporal do-

main (temporal correlation) or in terms of their contents (content

correlation). These contents are often represented by categorical

attributes [37] that defy existing similarity measurements. Mean-

while, temporally correlated alerts may not occur consecutively

in time but can be separated by false positive ones. Therefore, it

is necessary to develop post-processing systems that capture both

long-term temporal dependencies as well as content-level correla-

tions.

Existing work on alert post-processing focuses either on model-

ing causalities between alerts to generate abnormal patterns [21, 36],

or filtering out false positive alerts [28, 29]. The models on alert

pattern discovery rely on the prior knowledge or alert labels, which

is inadequate to be applied to real system when prior knowledge is

not available and the proportion of false positive alerts is large. The

models on false positive alert filtering, by contrast, ignore the corre-

lations between alerts and deal with them independently. Therefore,

it can be more advantageous to consider both objectives together

to improve detection accuracy and understand complex abnormal

behaviors. On the one hand, filtering out false positive alerts leads

to more confident abnormal scenarios/patterns being reconstructed;

on the other hand, modeling the dependencies between alerts helps

filter out some isolated alerts as false positives.

In this paper, we propose CAR, an unsupervised, data-driven

collaborative alert ranking framework that enables one to identify

true positive alerts and their corresponding alert patterns simul-

taneously, by exploiting both temporal and content correlations

between alerts. CAR addresses the aforementioned challenges in

three steps. To model the temporal dependencies between alerts,

we design a prefix tree-based model that compactly represents alert

sequences as well as preserves long-term temporal dependencies.

A set of hierarchical Pitman-Yor priors are used to model the de-

pendencies in a probabilistic way. We further discover a set of alert

patterns that correlate individual alerts with higher-level abnormal

behaviors. To model the content correlations between alerts, we

propose an entity embedding-based model to learn the latent vec-

tor of each entity. Based on the latent representation, a proximity

measurement is adopted to quantify the similarity between alerts.

Finally, in order to simultaneously consider the temporal and con-

text correlations, we propose the collaborative alert ranking via

a unified optimization framework, such that low-level alerts and

high-level alert patterns that truly relate to abnormal behaviors

can be uncovered. Empirical studies on both synthetic and real

enterprise alert data demonstrate the effectiveness of our proposed

model.

To summarize, in this work we make the following contributions:

• We identify an important problem (collaborative alert rank-

ing) in alert post-processing;

• We propose an optimization framework for collaborative

alert ranking by exploiting both temporal and content corre-

lations between alerts;

• We develop a prefix tree-based temporal model to discover

the underlying abnormal scenarios by modeling the long-

term dependencies between alerts;

• We build an embedding-based content model to measure the

similarity between heterogeneous categorical alerts;

• We successfully apply our methodology to a real enterprise

security system and demonstrate its effectiveness.

In the rest of this paper, we formally define our problem in Section

2, and provide the detail description of the proposed approach in

Section 3. Experimental results of applying the proposed method in

a real enterprise security system are presented in Section 4. Finally,

we discuss the related work and draw the conclusion in Section 5

and Section 6, respectively.

2 PRELIMINARIES AND PROBLEM
DEFINITION

Different from existing methods that focus on numerical data, our

goal is to build an alert post-processing system for categorical alert

data.

Heterogeneous Categorical Alert. A heterogeneous categorical

alert a = (v1, . . . ,vm , t) is a suspicious event record that contains

m different categorical attributes, and the ith attribute value vi
denotes an entity from the type Vi . The timestamp t can also be

categorized into meaningful intervals (such as hours). For example,

in enterprise security systems, an alert typically involves entities

such as user, time, source/destination process, and files.

Alert Pattern. An alert pattern is a subsequence of alerts that may

represent multiple steps of an abnormal system activity. An alert

pattern of length L is constructed by L alerts, denoted as u1:L =
{a1, . . . ,aL}, ordered by their time stamps, T (a1) < · · · < T (aL).
For instance, an ATP attack shown in Figure 1 can be deemed to be
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an alert pattern, consisting of a number of steps/alerts in it. Each

alert indicates one step in the attack.

Problem Statement: Collaborative Alert Ranking. Given a set

of categorical alerts {a1, . . . ,aT } generated by an anomaly detec-

tion engine, the maximum length of an alert pattern Lmax , and an

integer number K , the problem is to identify top K ranked alerts

that are most likely to be true positives and their corresponding

alert patterns with a length no more than Lmax .

3 METHODOLOGY
3.1 Overview
The intuition behind our method is that the alerts whose occur-

rence can be collectively related and supported by each other, both

temporally and contextually, are more likely to shed important

lights on true abnormal events. Thus, our goal is to automatically

explore temporal and content-based dependencies between alerts to

rank the potential true positive alerts and their sequential patterns

higher. In some rare cases, the isolated alerts may be true positives.

But it’s possible to identify these isolated true positive alerts by us-

ing some empirical evidence (e.g., via a reference), which is beyond

the scope of this paper (i.e., designing a data-driven method).

We start by exploiting the temporal structure in alert sequences.

A prefix tree-based hierarchical Bayesian model is built to recover

temporal dependencies between alerts and simultaneously extract

alert patterns. In the meantime, we embed the categorical enti-

ties/attributes in a latent space to model content similarities be-

tween alerts. Finally, we compute the ranking of alerts by maximiz-

ing the consensus among the temporal and content structures, and

simultaneously generate the alert patterns from the true positive

alerts.

3.2 Temporal Dependency Modeling
Since a real system’s abnormal behavior, such as the APT attack,

may include a number of separated steps residing on a long temporal

span, we aim at capturing the dependencies between nearby alerts

(short-term dependency) as well as alerts in long patterns (long-

term dependency).

Intuitively, for each possible alert pattern u1:L = {a1, . . . ,aL}
from the alert sequence, we can measure the temporal dependency

between each alert at , t ⩾ 2 and its preceding alerts u1:t−1 =
{a1 . . . ,at−1} using a predictive distribution conditioned on u1:t−1,
i.e., p(at |u1:t−1). The overall strength of temporal dependency in

each alert pattern can be assessed by the joint distribution, p(u1:L).
A higher joint probability indicates a stronger temporal dependency

in the alert pattern. Using the Bayesian rule, the joint distribution

of an alert pattern can be estimated by a sequence of predictive

distributions:

p(u1:L) =
L∏
t=1

p(at |u1:t−1). (1)

Here, we assume the distributions are discrete and the number

of possible alerts is finite. But every alert would be unique when

all attributes, including time-related attributes, are considered, and

we would lose the opportunity to learn any temporal patterns.

Therefore, we consider a set of important entities with examples

including the alert event source (e.g., process exename) and desti-

nation (e.g., file name) to represent each alert
1
and symbolize the

alert sequences with a finite symbol set Σ. That is, the alerts with
the same source and destination will be represented using the same

symbol.

Denote the predictive distribution conditioned on preceding

alerts asG[u1:t−1]. To obtain the joint distribution in Eq. 1, we need to
estimate all predictive distributions conditioned on the short pattern

included inu, i.e., {G[u′]}u′∈{u1:t |1⩽t⩽L } . However, estimating each

predictive distribution independently requires adequate training

observations that include the specific alert pattern, which often can

not be satisfied in real-world scenarios.

Figure 2: An example of prefix tree on sequenceABCBC. The
marginalized edges are marked in bold red.

3.2.1 Prefix Tree Construction. To solve this problem, we first use

a prefix tree to efficiently represent the alert sequence and hierar-

chically tie together the predictive distributions. The prefix tree

preserves the temporal relationships between alerts [34]. Specifi-

cally, each node in the prefix tree represents an alert pattern and

the root is associated with empty pattern. The descendants of an

alert pattern represent its prefix patterns that include it and add

a prefix alert to it. By recursively adding prefix alerts to the alert

pattern and marginalizing out the non-brunching interior nodes,

the prefix tree can be directly constructed from an input sequence

in linear time and space [34]. An example sequence s = ABCBC is

used in Fig. 2 to illustrate the construction of prefix tree.

3.2.2 Hierarchical Bayesian Model Learning. Then, we build a hi-

erarchical Bayesian model to estimate the predictive distributions

connected by the prefix tree. Each pattern in the prefix tree is as-

sociated with a predictive distribution conditioned on it and the

descendants of it represent the predictive distributions of its prefix

patterns. Our model uses observations that occur in each pattern to

recursively inform the predictive distributions of its prefix patterns

and vice versa.

To model the discrete predictive distributions, one typical way is

by using Dirichlet priors. However, recent research [9] has shown

1
Please note that other entity attributes will still be considered in the content depen-

dency modeling part (see Section 3.3).
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that models employing Pitman-Yor priors can significantly outper-

form the Dirichlet priors, especially where complex hierarchical

relationships exist between latent variables. Thus, in this work,

we apply a set of hierarchical Pitman-Yor processes to model the

discrete predictive distributions in the prefix tree and their hier-

archical structure. We model each predictive distribution, G[u], as
a Pitman-Yor process, PY (d, c,G0), whose random sample comes

from an infinite discrete probability distribution. It is governed by

a prior distribution, G0, representing the prior probability of occur-

rence of each alert before observing any data; a discount parameter

d (0 ⩽ d ⩽ 1), and a strength parameter c (c < −d), controlling
the amount of variability around G0. When d = 0, the Pitman-

Yor process reduces to a Dirichlet distribution with parameter cG0.

Using the Pitman-Yor process, each predictive distribution can be

expressed as:

G[u] |du , cu ,G[π (u)] ∼ PY (du , cu ,G[π (u)]), (2)

where du and cu are the discount and strength parameters and

G[π (u)] is the prior distribution of G[u]. The prior distribution cor-

responds to the predictive distribution conditioned on its suffix

pattern, π (u), which consists of all but the earliest alert in u. It’s
also a Pitman-Yor process. This choice of the prior structure reflects

our belief that among all preceding alerts, those appearing closer to

the current alert are more important in capturing the dependencies

with the current alert. All parameters can be computed using Gibbs

sampling.

3.2.3 Alert Pattern Searching. We are interested in finding the alert

patterns corresponding to abnormal behaviors by their temporal

dependencies. In practice, it can be time-consuming to search all

possible alert patterns in a sequence, in particular considering long-

term dependencies. To address this problem, we use the breadth-

first search to traverse the prefix tree to identify the temporally

dependent alert patterns, and use the joint distribution in Eq. 1 to

measure the dependency in each alert pattern. The stronger the

temporal dependency in a pattern is, the more likely that alerts in

this pattern collectively pinpoint an abnormal behavior. Since the

length of the pattern can grow very large as the height of prefix

tree increases, we use parameters Lmax and Lmin to control the

maximal and minimal lengths of patterns. Therefore, we obtain a

set of alert patterns and their strengths of dependencies from the

temporal model, denoted as U = {(u,pu )|Lmin ⩽ |u | ⩽ Lmax }.
For example, if the Lmax and Lmin are set at 3 and 2, respectively,

three patterns, {BC,ABC,AB} can be obtained from the prefix tree

shown in Fig. 2.

3.3 Content Dependency Modeling
In addition to temporal information, an alert also contains rich

content information in terms of heterogeneous categorical entities

such as host, user, source, and destination. The content similarities

among a series of alerts can provide useful hints to group them

into the same high-level anomalies. In this section, we explore the

content dependencies of these categorical entities within each alert.

Every alert consists of a set of entities. Their co-occurrence in

different alerts is one of the most commonly considered connec-

tions [1]. However, entities — as the categorical attributes of an alert

— don’t have any intrinsic ordering among themselves, making tra-

ditional numerical learning algorithms hard to directly leverage

their co-occurrences [37]. To address this challenge, we embed all

entities into a common latent space, where co-occurrences between

entities are preserved. Then, the closeness between entities can be

easily calculated in the space by popular metrics, such as cosine

similarity.

In concrete, given an alert a = (v1,v2, . . . ,vm , t), we model the

entity co-occurrences in a by the conditional probability p(vi |vj ;θ )
for each pair of categorical entities in a, using the following Softmax

function:∏
vi ,vj ∈a

p(vi |vj ;θ ) =
∏

vi ,vj ∈a

exp(wvivj · zvi · zvj )∑
v ′
i ∈V exp(wvivj · zv ′

i
· zvj )

, (3)

where zvi and zvi are the embedding vectors for vi and vj , respec-
tively, and V is the set of all available entities.wvivj is the weight

for pairwise interaction betweenvi ’s andvj ’s entity types, and it is
non-negative constrained. θ includes the parameters zvi andwvivj
for each vi ∈ V .

Given all observations {a1, . . . ,aT }, our goal is to set the pa-

rameters such that Eq. 3 is maximized. This optimization model

has been historically known to be very expensive, due to the de-

nominator of Eq. 3 summing over all entities of V . Therefore, we
follow the idea of negative sampling [26] to address this challenge.

Negative sampling shares a very similar idea of noise-contrastive
estimation (NCE) [15]. In general, to avoid dealing with too many

entities in V , we only update a sample of them. We surely should

keep all observed co-occurred entities in our data, and we need to

artificially sample a few “noisy entity pairs” — they are not sup-

posed to co-occur so their content similarities should be low. In the

end, after taking the logarithm and negative sampling, we aim to

minimize the following objective:

minv,w −∑
(vi ,vj )∈D log(wvivjσ (zvi · zvj )) (4)

−∑
(v ′
i ,v

′
j )∈D′ log(wv ′

iv
′
j
σ (−zv ′

i
· zv ′

j
)),

where σ is the sigmoid function, and D is the collection of entity co-

occurrences observed in our data. D ′
is the set of negative samples

constructed by certain sampling scheme. Concretely, for each co-

occurrence (vi ,vj ) ∈ D, we sample k noises (v ′
i1 ,vj ), (v

′
i2 ,vj ), ...,

(v ′
ik
,vj ), where v ′

i is drawn according to a noise distribution. With-

out a rule of thumb on guiding negative sampling, we empirically

test several and find the best one when sampling vi in a probability

inversely proportional to the frequency of co-occurrence with vj .
Then, the standard mini-batch gradient descent algorithm is used

to solve the Eq. 4.

Next, given the learned embedding vector for each entity, we

measure the pairwise alert similarity via the weighted combination

of cosine similarities between their entities. Suppose we have two

alerts ai = (vi1 ,vi2 , . . . ,vim ) and aj = (vj1 ,vj2 , . . . ,vjm ). Their
content similarity, denoted by Si j , can be calculated as:

Si j =
∑

vik ∈ai ,vjk ∈aj
wvik ,vjk ⟨zvik , zvjk ⟩,

where zvik and zvjk are embedding vectors of entities vik and vjk ,

respectively, and wvik vjk is the learned weight between the two

entity types of vik and vjk .
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3.4 Collaborative Alert Ranking
In this section, we propose a ranking algorithm that simultaneously

computes the confidence scores for both individual alerts and alert

patterns, by maximizing their consensus in terms of both temporal

structure and content similarity.

Given a sequence of alerts ai , i = 1, . . . ,T , whose confidence

scores are denoted by τi ’s, 0 ⩽ τi ⩽ 1. The pairwise similarities

between alerts is denoted by a similarity matrix S ∈ RT×T . On the

other hand, we also extract L alert patterns, ul , l = 1, . . . ,L, based
on the temporal model, whose strength of temporal dependency

is denoted as pl and provided by the temporal model. Note that

for each alert pattern ul , we have a number of alerts associated

with it. The patterns constructed by true positive alerts are more

likely to associate with the attack behavior. Thus, we also assign a

confidence score to each alert pattern using µl ’s, 0 ⩽ µl ⩽ 1. The

relation between T alerts and L alert patterns are represented by a

0/1 coincidence matrix F ∈ RT×L . If alert ai belongs to alert pattern
ul , then Fil = 1.

Our goal is to simultaneously compute the alerts’ confidence

τi ’s and alert-patterns’ confidence µl ’s, given alerts’ similarity S ,
coincidence matrix F , and temporal dependency strength within

patterns, pl ’s. Here, a key assumption is that alerts or alert patterns

truly associated with abnormal system behaviors are more likely

“supporting” each other in terms of either content correlations or

temporal dependencies. Therefore, we intend to maximize the con-

sensus between temporal and content dependencies following the

requirements: 1) Those alert patterns with higher levels of temporal

dependency strength,pl , are more likely to be true positives; namely

those alert patterns composed of temporally correlated alerts are

more relevant patterns; 2) Alerts with similar content information

tend to have similar confidence scores; 3) The confidence score of

each alert pattern should be close to the confidence scores of the

individual alerts associated with it.

Given these constraints, we propose the following optimization

problem:

minτ ,µ −
∑
l pl µl +

λ1
2

∑
i, j Si j (τi − τj )2

+
λ2
2

∑
i,l Fil (µl − τi )2

s .t .
∑
i τi ⩽ K , 0 ⩽ µl ⩽ 1, 0 ⩽ τi ⩽ 1. (5)

Here, the first term in the objective function is used to correlate

µl ’s to pl ’s (requirement-1). The second term is used to enforce

the smoothness of τi ’s based on the content-level similarity S
(requirement-2). These two terms independently impose constraints

on the alert-patterns’ confidence and alerts’ confidence. They are

connected with each other by the third term in the objective, which

states that the alert-pattern’s confidence µl should be bounded close
to the confidence of those individual alerts associated with the pat-

tern τi , i ∈ {j |aj ∈ ul }. By doing this, each alert and alert-pattern

will be given a confidence score based on a global ranking that

reaches the consensus as specified by the temporal structures and

content similarities. λ1 and λ2 are tuning parameters controlling

the effects of last two terms. A larger λ1 encourages similar alerts

to have similar confidence scores, and a larger λ2 leads to closer

confidence scores between alert-patterns and associated alerts. The

confidence scores are non-negative, and K is a pre-defined integer

that roughly controls the number of alerts with non-zero scores.

Proof of Convexity. Here, we prove the convexity of the opti-

mization problem (Eq.5):

First, we write Eq. 5 in a matrix form. Define diagonal matri-

ces DFc ∈ RL×L and DFr ∈ RT×T , whose diagonal entries are

DFc (l , l) =
∑
i Fil , DFr (i, i) =

∑
l Fil .

Use the Laplacian matrix LS to represent similarity structure

between alerts, i.e., LS = DS − S , where DS is a diagonal matrix

with DS (i, i) =
∑
j S(i, j).

Let x = [τ1, . . . ,τT , µ1, . . . , µL]T ∈ R(T+L)×1, then Eq. 5 can be

simply written as:

minx qT x + 1

2
xTQx

s .t . Ax ⩽ b, x ⩾ 0 (6)

where q = [0,p1, . . . ,pL] ∈ R1×(T+L), Q = [ λ2DFr +λ1LS −λ2F
−λ2FT λ2DFc

] ∈

R(T+L)×(T+L),A = [ I(T+L)×(T+L)11×T ,01×L
∈ R(T+L+1)×(T+L), and b = [1, . . . , 1,

K]T ∈ R(T+L+1)×1.
Since the Hessian matrix Q is positive semidefinite, i.e., xTQx =

λ1
∑
i, jSi j (τi − τj )2 + λ2

∑
i,l Fil (µl − τi )2 ⩾ 0 for ∀x ∈ R(T+L)×1,

the optimization problem in Eq. 6 is convex.

Thus, this is a standard quadratic programming problem that

can be efficiently solved by existing algorithms such as NNLS [19].

By solving this problem, each alert and alert-pattern will be given a

confidence score based on a global ranking that reaches the consen-

sus as specified by the temporal structure and content similarity.

4 EXPERIMENTS
4.1 Experiment Setup
We apply CAR to a real-world enterprise intrusion detection system

The alert data was generated by an off-the-shelf anomaly detec-

tion engine. The anomaly detection engine is able to automati-

cally detect some unknown cyber-attacks, but meanwhile, it suffers

from the same problem—high false positive rate—as many other

anomaly-based intrusion detection engines. Hence, we apply CAR
to help improve the intrusion detection performance. In total, there

are 3, 322 alerts collected from 173 computers within one month.

Among them, 41 alerts are true positive ones corresponding to six

different types of popular attacks. Each alert is a computer system

event recording an interaction between a pair of system entities.

The types of system entities include processes, files, and Internet
sockets (INETSockets).
Attack Description. There are six different types of attacks con-
sisted by 3 to 7 attack steps. Each step corresponds to one true

positive alert and consecutive steps can be separated by false posi-

tives.

• MLS Attack (MLS): This attack targets at the /selinux/mls file,
which defines theMLS (Multi-Level Security) classification of

files within the host. In general, the /selinux/mls file should be
kept secret to all users except for the security administrator,

as it exposes the security rules of a computer system and

enables the attackers to find potential vulnerabilities. By the

intrusion attack, the attacker first exploits the ssh process to

access /selinux/mls file. If the file access is successful, the file
content is sent to an external host (i.e., the attacker).
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• Snowden Attack (SNO): This attack targets at the /etc/passwd
file, which stores the password digest of all users as well as

the user group information. First, the attacker tries to access

the /etc/passwd file by the gvfs process, which enables easy

access from a remote host via FTP. Then the attacker tries

to send the file via an INETSocket.
• Botnet Attack (BOT): In this attack, the remote intruder em-

ploys the bash process to scan a sensitive file /var/log/apt/
history.log. This file stores detailed installationmessages. The

attackers are interested in it as they can intrude the host by

exploiting the vulnerabilities of the installed software. The

sensitive information is leaked via an INETSocket.
• Emulating Enterprise Environment (EEE): This attack consists
of seven steps. The hacker first utilizes the IRC vulnera-

bility to create telnet process. The telnet process is then

used to create malware process and open reverse connection.

The malware process downloads malware binary (trojan.exe).
Then the trojan.exe is created and used to connect back to

the attacker host. DLL is injected by the running process

notepad.exe and creates the connection back to the hacker.

The hacker uses mimikatz and kiwi to perform memory

operation inside the meterpreter context. Finally, malware

PwDump7.exe and wce.exe are copied and run on the target

host.

• Diversifying Attack Vectors (DAV): There are six steps in

this attack. The hacker first writes malicious PHP file by

HTTP connection, then downloads the malware process

(trojan.exe), and connects back to attacker host. The process

notepad.exe is run to perform DLL injection. Attacker further

usesmimikatz and kiwi to perform memory operation inside

meterpreter context. Finally, it copies and runs PwDump7.exe
and wce.exe on the target host.

• Domain Controller Penetration (DCP): This attack includes

five steps to penetrate domain controller. First, the hacker

sends an email with a malicious word document, and the

document writes malware python32.exe, which opens up

a connection to the attacker host. The hacker then runs

notepad.exe and performs reflective DLL injection to gain

privilege. He/she further transfers password enumerator and

runs process gsecdump-v2b5.exe to get all user credentials.

Finally, SQL server address is probed to connect and dump

the database into the attacker host.

Since real attacks typically have more than two steps to be ac-

complished, we set the minimum alert pattern length Lmin = 3.

And by default, we set the maximum alert pattern length Lmax = 7,

and the pre-defined integer K = 50.

Baseline Models. To demonstrate the effectiveness, we compare

CARwith temporal-basedmethods (i.e.,NGRAM and iBOAT ), content-
based methods (i.e., Embedding and SimRank), as well as the multi-

view based method MVCluster.

• NGRAM [3]: This method has been widely used to learn the

temporal structure between normal events, and label the

alerts that do not appear in the normal patterns as abnormal

ones. In our experiments, we use the first 40% false positive

alerts for training.

• iBOAT [5]: This association rule based method defines true

positive alerts as those whose corresponding temporal pat-

terns have high confidence scores.

• Embedding: This is our content dependencymodelingmethod

(see Section 3.3) to learn the pairwise content-level similari-

ties between alerts. We use values in the dominant eigenvec-

tors of similarity matrices to determine the anomaly degree

of each alert.

• SimRank [17]: SimRank is a widely-used graph-based model

to measure the similarities between categorical data. It ag-

gregates entities into a graph and measures the pairwise

similarities by applying random walk algorithm. Based on

the similarity matrix, we use the same way as in Embedding
to measure the anomaly degree of each alert.

• MVCluster [31]: The multi-view based clustering method

seeks groupings that are consistent across different represen-

tations of alert data. We use temporal and content attributes

as views and cluster alerts into true positive and false positive

groups.

Evaluation Metrics. Similar to [11, 12], we adopt ROC (Receiver

Operating Characteristic curves) and PRC (Precision Recall curves)

for evaluating the ranking scores. Both curves reflect the quality of

predicted scores according to their true labels at different threshold

levels. To get quantitative measurements, the AUC (Area Under

curve) of both ROC and PRC are computed. For the method (i.e.,
MVCluster) without predicted scores, we use precision, TPR (True

Positive Rate), and FPR (False Positive Rate) instead.

Table 1: AUC of different alert ranking methods

Method CAR Embedding SimRank NGRAM iBOAT

ROC 0.998 0.353 0.258 0.440 0.140

PRC 0.719 0.003 0.003 0.006 0.040

Table 2: Comparison between MVCluster and CAR

Method TPR FPR Precision

MVCluster 1 0.720 0.006

CAR 1 0.010 0.281

4.2 Results for Detecting True Positive Alerts
The ROC and PRC curves presented in Fig. 3 demonstrate the effec-

tiveness of the proposed method in detecting true positive alerts.

As shown in the ROC curve, CAR is able to detect most true positive

alerts when the false positive rate is controlled at a low level. The

advantage of the proposed method is further quantified by the AUC

values summarized in Table 1. In the PRC curve, due to the fact that

a small number of true positives were ranked relatively low by the

proposed method, the precision can be low if all true positives need

to be detected. In addition, precision rates of the baseline methods

are relatively low because these models can only filter out up to

50% false positive alerts in their best cases.
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Table 3: AUC w.r.t. different parameter settings

Parameter K = 50 Lmax=7

Value Lmax=4 Lmax=5 Lmax=6 Lmax=7 K=1 K=10 K=50 K=100

ROC 0.995 0.999 0.998 0.998 0.996 0.998 0.998 0.999
PRC 0.401 0.829 0.843 0.840 0.760 0.760 0.802 0.821
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Figure 3: ROC and PRC curves of different methods.

In practice, it is unrealistic to provide accurate estimations of

the length of alert patterns, neither the number of true positive

alerts. Thus, we evaluate the effect of these parameters on the model

performance. Since the patterns with the length greater than 7 are

false positives with low confidence scores, they are unlikely to affect

the ranking. We vary the maximum pattern length Lmax from 4 to

7. We further set the pre-defined integer K at 1, 10, 50 and 100. The

ROC/PRC curves w.r.t. Lmax and K are plotted in Fig. 4. And the

AUC values are summarized in Table 3. We observe that the pre-

defined integer K doesn’t affect the CAR performance, because it

only controls the sparsity of alert scores but not the ranking among

top alerts. Meanwhile, incorporating longer patterns will benefit

the ranking result as demonstrated by the improvements of AUC

when Lmax increases. For instance, the PRC curve under Lmax = 4

performs worse than the other scenarios and starts from (0, 0) point.
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Figure 4: ROC and PRC curves w.r.t. the maximum pattern
length Lmax and the pre-defined integer K .

This is due to the fact that most attack scenarios have more than 4

attack steps and these long attack patterns are not considered when

Lmax is set at low level. This indicates the proposed algorithm is

more effective when both short and long patterns are considered.

4.3 Attack Scenario Related Patterns
To evaluate the CAR method in terms of uncovering meaningful

alert patterns, we compare it with the Temporal model presented

in Section 3.2. Table 4 lists the top six alert patterns generated by

CAR and compares their rankings in the Temporal model. These six

patterns are all highly associated with the real attacks. We use the

attack name plus the corresponding step number to represent the

alert in each pattern. For instance, the alert EEE-5 in the first pattern
represents the fifth step of Emulating Enterprise Environment attack.
Table 4 shows that by exploiting the content correlation between

alerts, CAR greatly boosts the rank of attack-related patterns in

Temporal model. For instance, four patterns are detected for the

EEE attack. A longer pattern that captures the whole EEE attack

scenario is also detected by CAR, with the highest rank in patterns

with lengths larger than 4, but with a relatively low rank of 61 in

all patterns. That is because longer patterns tend to have lower

correlation scores.

4.4 Synthetic Experiment and Analysis
We further evaluate the robustness of CAR on five synthetic datasets

that contain different percentages of true positive alerts (TPs). More

specifically, the five synthetic datasets have 10%, 20%, 30%, 40% and
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Table 4: High-ranked alert pattern related to attacks

CAR rank Alert pattern Temporal rank
1 EEE-5, EEE-6, EEE-7 1

2 EEE-1, EEE-2, EEE-3 2

3 EEE-4, EEE-5, EEE-6 3

4 DCP-2, DCP-3, DCP-4, DCP-5 7

5 DAV-2, DAV-3, DAV-4, DAV-6 14

6 EEE-1, EEE-2, EEE-3, EEE-4 41
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Percentage of true positives in synthetic data
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Figure 5: AUC of different methods under five synthetic
datasets.

50% TPs, respectively. They are generated by resampling the six

attack scenarios and randomly injecting the resampled TPs to the

3, 322 alerts generated from the real intrusion detection system.

The temporal and content dependencies between TPs are preserved

in the synthetic datasets.

We compare the detection accuracy of the proposed method

CAR and baseline models. As shown in Fig. 5, the advantage of

CAR is consistent under different percentages of true positives. The

performance of content similarity based methods (i.e., Embedding
and SimRank) is improved when the number of TPs increases.

This is due to the fact that content dependency between TPs is

strengthened by resampling. Since the temporal dependency in

synthetic datasets is also stronger, the performance of iBOAT is also

getting improved with the increased number of TPs. The NGRAM
method, which uses a set of false positive alerts for training, is less

likely to be affected by the percentage of TPs, with the AUC of the

ROC remain unchanged.

5 RELATEDWORK
5.1 Alert Post-processing
Data mining and machine learning techniques have been widely

used in alert post-processing [18, 27]. Depending on the level of

prior knowledge needed, they can be classified into supervised

models, which rely on the labeled training alerts, and unsupervised

models, which aim to detect unknown anomalies. Alert classifi-

cation models [29] use classifiers to distinguish true alerts with

false positives. These methods can not capture alerts that are not

observed in the training phase. In order to compensate for the lack

of prior knowledge, clustering techniques have been proven to be

highly effective in reducing a large number of alerts by grouping

similar events together [28]. Valdes and Skinner proposed a proba-

bilistic model that measures the overall similarity between alerts

as a weighted combination of their similarities on respective at-

tributes [35]. However, the specification of weights relies on expert

knowledge. Holmann and Sick proposed an online intrusion alerts

aggregation system [16], which measures the similarity between

alerts using a finite mixture distribution. However, the effectiveness

of this method depends on the distribution assumptions. In addition,

the main weakness of clustering models is that they do not exploit

temporal dependencies, such as the causality between alerts.

5.2 Alert Pattern Discovery
Alert pattern discovery aims to reconstruct multi-step abnormal

scenarios by looking into the causality between alerts. Association

rule mining is used to investigate multi-step alerts reconstruction

in [21]. Frequent sequence patterns are discovered over alert bursts

and abnormal scenarios are constructed based on pattern matching

and correlativity calculation. However, the risk of missing relevant

alerts and the effects of alert latency are not considered in this

work. Machine learning methods, such as n-gram analysis [10],

Hidden Markov Model [36], and Bayesian network [27], are com-

monly used to reconstruct complex scenarios by training the model

under known abnormal scenarios or true positive alerts. However,

the effectiveness of these methods rely on the prior knowledge to

acquire labeled data.

5.3 Multi-view Unsupervised Learning
Our work is also closely related to the multi-view unsupervised

learning problems which aim to learn a consensus pattern from

multiple representations of data[8, 24, 32, 33]. In social network

analysis, for instance, same instances could be related to each other

in multiple representations including email networks, collaboration

networks, and organization hierarchy [24]. [24] proposed general

optimization models for clustering and spectral dimensionality

reduction from multi-view data while [33] proposed a multi-view

feature selection framework to exploit relations among different

views to help each other select relevant features. [14, 23] further

used the multiple sources data for detecting anomalies by exploring
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the inconsistent behaviors across different sources. However, the

multi-view unsupervised learning methods only focus on exploiting

the consistencies shared by graphical or vector representations from

different sources. Without explicitly modeling the temporal and

content correlations between instances, the multi-view learning

methods are not able to be applied to this problem.

Different from the existing methods, CAR exhibits several desir-

able properties required by an alert post-processing system: it is

(1) unsupervised: no training labels need to be provided; (2) data-

driven: no prior knowledge is needed for data pre-processing or

pre-defined abnormal patterns; and (3) unified framework: CAR
discovers top-k most relevant alerts and the corresponding alert

patterns simultaneously, by modeling both temporal and content

dependencies between alerts.

6 CONCLUSION
In this paper, we addressed an important and challenging problem

of alert post-processing on massive heterogeneous categorical alert

data. We proposed CAR, an unsupervised data-driven collaborative

alert ranking algorithm to identify the true positive alerts and

their associated abnormal patterns simultaneously. When tested

on various enterprise cyber attack scenarios, CAR demonstrated

the superiority in terms of various skill and robustness metrics,

including 55 − 85% AUC improvement as well as interpretability

of the detected alert patterns. An interesting direction for further

exploration would be incorporating raw event data with the alert

data in abnormal pattern generations.
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