
Efficient Discovery of Abnormal Event Sequences
in Enterprise Security Systems

Boxiang Dong∗,1,2, Zhengzhang Chen∗,1, Hui (Wendy) Wang3, Lu-An Tang1,
Kai Zhang4, Ying Lin5, Wei Cheng1, Zhichun Li1, Haifeng Chen1

1NEC Laboratories America
2Montclair State University

3Stevens Institute of Technology
4Temple University

5University of Washington
∗Corresponding authors: dongb@montclair.edu; zchen@nec-labs.com

ABSTRACT

Intrusion detection system (IDS) is an important part of enterprise
security system architecture. In particular, anomaly-based IDS has
been widely applied to detect single abnormal process events that
deviate from the majority. However, intrusion activity usually con-
sists of a series of low-level heterogeneous events. The gap between
low-level process events and high-level intrusion activities makes
it particularly challenging to identify process events that are truly
involved in a real malicious activity, and especially considering the
massive “noisy” events filling the event sequences. Hence, the exist-
ing work that focus on detecting single events can hardly achieve
high detection accuracy. In this work, we formulate a novel problem
in intrusion detection — suspicious event sequence discovery, and
proposeGID, an efficient graph-based intrusion detection technique
that can identify abnormal event sequences from massive heteroge-
neous process traces with high accuracy. We fully implement GID
and deploy it into a real-world enterprise security system, and it
greatly helps detect the advanced threats and optimize the incident
response. Executing GID on both static and streaming data shows
that GID is efficient (processes about 2 million records per minute)
and accurate for intrusion detection.

1 INTRODUCTION

With computers and networked systems playing indispensable roles
in almost every aspect of modern society such as industry, govern-
ment, and economy, cyber security undoubtedly bears the utmost
importance in preserving right social orders. However, nowadays,
serious cyber-attacks still keep being reported, which have caused
significant financial loss and public tensions. One example is the
leakage of sensitive, high-profile information from giant marketing
establishments or financial institutions. According to a recent study

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’17 , November 6–10, 2017, Singapore, Singapore

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4918-5/17/11. . . $15.00
https://doi.org/10.1145/3132847.3132854

by Ponemon Institute and IBM [13], data breaches cost companies
an average of $201 per record in 2014, and the total cost paid by
organizations reaches $5.9 millions.

To guarantee information security in the network of comput-
ers, an intrusion detection system (IDS) is needed to keep track
of the running status of the entire network and identify scenarios
that are associated with potential attacks or malicious behaviors.
There are two types of intrusion detection approaches, namely the
signature-based and anomaly-based intrusion detection approaches.
Compared to signature-based methods [3, 18], which can only de-
tect attacks for which a signature has previously been created,
anomaly-based intrusion detection aims at identifying unusual en-
tities, events, or observations from a running system that deviate
from its normal pattern of behaviors. Detected anomaly patterns
can be translated into critical actionable information that can signif-
icantly facilitate human decision-making and mitigate the damage
of cyber-attacks. Towards this end, anomaly-based intrusion detec-
tion [12, 14] turns out to be a particularly useful tool.

Although the recent years have witnessed significant progress of
intrusion detection techniques, the rise of big data has introduced
new challenges for the design of efficient and accurate anomaly-
based intrusion detection approaches. First, IDS typically deals
with a large volume of system event data (normally more than
10, 000 events per host per second). The challenge is how to identify
abnormal system behaviors from such large-scale (possibly fast
streaming) data. Second, the variety of system entity types may
necessitate high-dimensional features in subsequent processing.
Such enormous feature space could easily lead to the problem,
coined by Bellman as “the curse of dimensionality” [2].

More importantly, IDS often has to rely on a coordinated or

sequential, but not independent, action of multiple system events to
determine the security status. This is because system monitoring
data are typically low-level process events or interactions between
various system entities such as processes, files and sockets (e.g.,
a program opens a file or connects to a server), while attempted
intrusions are higher-level activities which usually involve multiple
events together. For example, a network attack called Advanced
Persistent Threat is composed of a set of stealthy and continuous
computer hacking processes, by first attempting to gain a foothold
in the environment, then using the compromised systems as the
access into the target network, followed by deploying additional

https://doi.org/10.1145/3132847.3132854

tools that help fulfill the attack objective. The gap between low-
level process events and high-level intrusion activities makes it
particularly challenging to identify process events that are truly
involved in a real malicious activity, and especially considering the
massive “noisy” events filling the event sequences.

Hence, the approaches that identify individual process events
that confer a given system state are inappropriate to detect se-
quences of such interactions between process events. Therefore,
there exists a vital need for the methods that can detect the se-
quences of process events that are related to the malicious intrusion
activities in an efficient and accurate way.

To address the challenging problem of identifying truly relevant
process events to higher-level system attacks from the massive
amount of event sequences signifying extremely complex and dy-
namic behaviour of networked computer systems, in this paper,
we introduce GID, a graph-based intrusion detection technique to
capture the interaction behaviour among system entities, which
sheds important light on event sequences or sequence patterns
that are related to intrusion attacks. In particular, we design a com-
pact graph structure that captures the information flow between
different system entities. This structure effectively removes the
redundancy in system monitoring data and provides the foundation
for in-memory intrusion detection solutions. Then, we discover
the routine behavior for each system entity in the graph based
on a transition probability model. An anomaly score is calculated
for each candidate event sequence that quantifies its “rareness” in
compared with normal profiles. In specific, if the behavior of any
involved entity largely deviates from its routine role, the event
sequence is marked as suspicious. In this way, we are capable of
capturing abnormal event sequences with a high probability.

However, the anomaly score is sensitive to the length of the event
sequence. To eliminate the potential score bias from the sequence
length, we use the power transformation based approach to nor-
malize the anomaly scores so that the scores of paths with different
lengths have the same distribution. To improve the detection accu-
racy, we perform the validation of the suspicious event sequences
to ensure that only those event sequences that sufficiently devi-
ate from normal ones can trigger alerts. We launch an extensive
set of experiments on a real-world testbed to evaluate the time
performance and detection accuracy of our approach. The results
demonstrate that, on a real-world system monitoring dataset that
contains 440 million system events, GID is efficient (as much as
2 million records per minute) and accurate. We fully implement
GID and deploy it into an enterprise security system, which greatly
helps detect advanced threats, and optimize the incident response.

The main contribution of the paper has been summarized as
follows:

• We identify the important problem of suspicious event se-
quence discovery in intrusion detection;

• We design a compact graph model to preserve all the useful
information from massive system monitoring data;

• We develop a suspicious path discovery algorithm and prove
its convergence on directed acyclic graphs;

• We fully develop the detection engine and deploy it into a
real enterprise security system.

2 PRELIMINARIES AND PROBLEM

STATEMENT

In this section, we present the preliminaries and problem defini-
tion of our work. For the following sections, we assume that the
computer system is UNIX system, for simplicity of discussion.
System Entities. System monitoring data, collected by our agent,
indicates the interactions between a set of system entities. We
consider four types of system entities: (1) files, (2) processes, (3) Unix
domain sockets (UDSockets), and (4) Internet sockets (INETSockets).
Each type of entity is associated with a set of attributes.
System Events. We model the interactions between entities as
system events. Formally, a system event e(nb ,nd , t) is a record con-
taining source entity nb , destination entity nd , a time stamp t when
e happens. The nb and nd are entities of possibly different types.
In computer systems, a heterogeneous event is a record involving
entities of different types such as the files, processes, Unix domain
sockets (UDSockets), and Internet sockets (INETSockets). Accord-
ing to the design of modern operating systems, sockets function as
the proxy for different processes to communicate. Typically, two
processes that execute on the same host communicate with each
other via UDSockets, while processes on different hosts communi-
cate with each other by INETSockets. Therefore, on a single host,
the interactions exist between the following types of entities: (1)
processes and files, (2) processes and sockets (both UDSockets and
INETSockets), and (3) UDSockets and UDSockets.

System events can be generated at a high frequency (e.g., tens
of thousands events per second). In a modern computer system,
plentiful system events can take place “silently” in the backstage
without users ever being aware of them. For instance, the Exim
process, which is the mail transfer agent, frequently accesses the
/etc/hosts file to check the mapping between host names and IP’s.
Event Sequence. System events often happen in a chain. For
instance, process A first opens file F , then reads F , and sends
the content of F to process B. We formulate such chains as the
event sequence. Formally, a sequence of events e1, . . . , eℓ−1 that
happen in a chain is denoted as S = {e1, e2, . . . , eℓ−1}, where
ei .nd = ei+1.nb , i.e., ei ’s destination entity is the ei+1’s source
entity, and ei .t < ei+1.t for i ∈ {1, . . . , ℓ − 1}. The length of
S is ℓ. The timespan of a event sequence is ts = eℓ−1.t − e1.t .
A simplified representation is to denote the event sequence as
S = {n1,n2, . . . ,nℓ−1,nℓ}, informing that the data is transmitted
from n1 to nℓ , via n2, . . . ,nℓ−1 following the time order.
Abnormal Event Sequence.Most of the abnormal system behav-
iors, such as cyber intrusion, spying, and information stealing, often
involve a sequence of low-level events to achieve their goals. It is
typically these event sequences, not individual events, that behave
differently from regular (or normal) patterns of system behavior
(see the formal definition of abnormality in Section 3.4). We call
those event sequences that are associated with malicious attacks as
abnormal event sequences. Abnormal system activities, such as cyber
attacks, often finish in a relatively short time period, in order to
avoid detection. Thus, the time span of abnormal event sequences
is short.

To measure the degree of severity of suspicious event sequences,
we assign an anomaly score to each candidate event sequence (the
formulation of anomaly score is in Section 3.4).

Intrusion attacks usually complete in a short time period, in
order to avoid being detected. In other words, only those events
that are temporally close may be truly involved in committing a
cybercrime. Therefore, instead of considering all possible event
sequences, we focus on those events with a short time span. More
formally, our problem can be defined as follows:
Problem Statement. Given the system monitoring data that con-
tains a set of events E, the user-specified positive integers ℓ, k , and
time window size ∆t , we aim to find the top k abnormal event se-
quences in E that include at most ℓ system events occurring within
the time period of ∆t .

There are two major challenges in this problem: (1) How to
define and compute the anomaly score of event sequence containing
multiple heterogeneous entities; and (2) How to rank the event
sequences of different lengths at the same time. In the next section,
we present our approach to resolve the challenges in detail.

3 ALGORITHM

3.1 Overview

In this paper, we propose GID, a graph-based intrusion detection
system, that can find abnormal event sequences from a large num-
ber of heterogeneous event traces. Figure 1 shows the framework
of GID. In particular, the graph modeling component (Section 3.2)
generates a compact graph that captures the complex interactions
among event entities, aiming to reduce the computational cost
in subsequent analysis components. The candidate path searching

component discovers all the candidate event sequences that may
correspond to malicious event sequences that the adversary ex-
ploits to disclose sensitive information (Section 3.3). From those
identified candidate paths, the suspicious path discovery component
discriminates those abnormal event sequences from the normal
ones (Section 3.4). The distinction between abnormal and normal
paths is based on the anomaly scores that measure the “rareness” of
each candidate event sequence compared with the historical ones.
The suspicious path discovery component returns those paths of
top-k anomaly scores as suspicious paths. To further reduce false
alarms, the suspicious path validation component measures the de-
viation between the suspicious sequences from the normal ones,
and mark those sequences as abnormal only if their deviation is
sufficiently large (Section 3.5). In the following sections, we discuss
the details of each component.

Candidate

Paths

!

System
monitoring

file "

Graph
Modeling

Graph

G=(V,E,T)

Candidate
Path

Searching

Suspicious
Path

Discovery

Suspicious Paths #
Abnormal Event
Sequences $

Suspicious
Path

Validation

Figure 1: Framework of GID

3.2 Graph Modeling

System monitoring data can be massive. For example, the data
collected from a single computer system by monitoring the process
interactions in one hour can easily reach 1 GB. Searching over such
massive data is prohibitively expensive in terms of both time and
space. Therefore, we devise a compact, graph-based representation
of the system event data.

The idea of compact graph representation comes from our ob-
servation that system events data are often redundant in several
ways. The first source of redundancy comes from the attributes,
as each event record contains not only the corresponding entities
but also attributes from these entities. Repeatedly storing the at-
tributes of those entities in a large number of events introduce
significant redundancy. The second source of redundancy comes
from the events that involve the same entities; the information of
these entities always repeatedly saved (with different time stamps).
Furthermore, normally intrusion attacks complete in a short time
window. Therefore, it is not necessary to search the data outside of
the user-defined time window.

Process

File

INET

UD

dash

install.log

{03:11:27, 06:54:33, ...}

https

ip1 -> ip2
{09:25:01, 13:14:55, ...}

vim

notebook.doc
{11:51:52, ...}

calendar.txt

{10:13:52, ...}

ud2

{09:16:24, 11:24:03, ...}

grep

{09:16:24, 11:24:03, ...}

{11:44:21, ...}

index.html

{06:16:21, 13:21:03, ...}

hosts
{08:21:13, ...}

{07:02:14, 12:11:43, ...}

{06:32:41, ...}

{09:31:33, ...}

ud1

{10:52:00, ...}

{10:05:02, ...}

Figure 2: An example of compact graph model; the red path

corresponds to an abnormal event sequence

Our graph model eliminates data redundancies. Formally, given
the data in a time window, we construct a directed graph G =
(V ,E,T), with: (1)V as a set of vertices, each representing an entity.
For enterprise surveillance data (see Section 4.1), each vertex of V
belongs to any of the following four types: files (F), processes (P),
UDSockets (U), and INETSockets (I), namelyV = F ∪P∪U ∪I ; (2) E
as a set of edges. For each pair of entities (ni ,nj), if there exists any
system event between them, we construct an edge (vi ,vj) in the
graph, wherevi (vj) corresponds to ni (nj); and (3)T as a set of time
stamps. For any edge (vi ,vj), it is possible that it is associated with
multiple timestamps (i.e., the corresponding event happens multiple
times). We use T (vi ,vj) to denote the set of time stamps on which
this event has ever happened. Formally,T (vi ,vj) = {e .t |e ∈ E,vi =
e .nb and vj = e .nd }. nb (nd) is the source (destination) entity
of e . Given an event sequence of length ℓ, there is a corresponding
path in G that includes ℓ vertices. In the rest of the paper, we will
use event sequence and path interchangeably.

In this paper, we are interested in only those event sequences
that happen in a given time interval, namely the timespan is less
than or equal to ∆t , where ∆t is a given threshold. Figure 2 shows
an example of the compact graph for enterprise surveillance data.
Note that according to the types of interactions that are allowed in
UNIX, G is not a complete graph. Instead, it only allows the edges
between (1) process and file nodes, (2) process and process nodes,

(3) process and socket (both UDSockets and INETSockets) nodes,
and (4) UDSocket and UDSocket nodes.

By removing the redundancy of attributes and events, our graph
representation can significantly compress the original heteroge-
neous event data while preserving relevant information for intru-
sion detection. Our experiment results in Section 4 demonstrate
that the graph model reduces the space cost significantly.

3.3 Candidate Path Search

The candidate path searching component searches for the paths in
G that could correspond to the malicious event sequences whose
length is no larger than ℓ. Considering that the graph can be densely
connected, we impose the following time order constraint on the
search procedure, demanding that for each path, its corresponding
event sequence must follow the time order. Formally, a path p =
{n1, . . . ,nr+1} satisfies the time order constraint if ∀i ∈ [1, r − 1],
there exists t1 ∈ T (ni ,ni+1) and t2 ∈ T (ni+1,ni+2) such that t1 ≤ t2.
This condition enforces the time order in the corresponding event
sequences.

A straightforwardway to generate candidate paths is to apply the
path pattern and time-order constraints in a breadth-first search. One
scan of the system event graph G is sufficient to find all candidate
paths. To reduce the space overhead, we calculate the anomaly
score (as discussed in Section 3.4) for each candidate path once it is
discovered, and only save the path in memory if it is in the top-k
list.
3.4 Suspicious Path Discovery

It is possible that some candidate paths discovered by the candidate
path searching component are not truly associated with system
attacks. Hence it is necessary to identify those suspicious paths that
are highly likely to be associated with abnormal event sequences
among a large set of candidate paths.

A straightforward idea of the suspicious path discovery is to
define their anomaly based on the frequency of the system enti-
ties that are involved. Those paths that involve rarely-used system
entities are considered as suspicious. This is not correct as many
intrusion attacks indeed only involve system entities that are pop-
ularly used in many events. Consider the enterprise surveillance
graph in Figure 2 as an example. The red path shows a typical infor-
mation leakage attack, via which the secret install.log file is leaked
through the vim and httpsd entities. Apparently vim is the editor
process and the httpsd process is a background daemon process
that supports https service. Both entities are involved in many nor-
mal system events. The frequency-based anomaly approach cannot
catch such intrusion attacks.

Continuing the example, we notice that, however, the interaction
between vim and install.log entities is abnormal, as typically the
install.log file is written by the processes such as dash, but not read
by the vim process, which mainly serves as a file editor.

Therefore, our basic idea is to define the anomaly based on both
the system entities and the interactions among them. Each path is
assigned an anomaly score that quantifies the degree of anomaly.
Next, we discuss how to calculate the anomaly scores.

First, we assign each system entity two scores, namely, a sender
score and a receiver score. The sender (receiver, resp.) score mea-
sures the activeness that the entity serves as an information flow

source (destination, resp.) For instance, the install.log file has a high
receiver score but relatively low receiver score, as it is frequently
modified whenever there is a package installation or upgrade, but
it is rarely read. In contrast, the hosts file has a high sender score.

Both sender and receiver scores are computed by following the
information flow in the system event graph G. In particular, given
the graphG , we produce a N ∗N square transition matrixA, where
N is the total number of entities, and

A[i][j] = prob(vi → vj) =
|T (vi ,vj)|

|
N∑
k=1

|T (vi ,vk)| |
, (1)

where T (vi ,vj) denotes the set of time stamps on which the event
between vi and vj has ever happened.

Intuitively, A[i][j] denotes the probability that the information
flows from vi to vj in G. We denote A as

A =

����������
P F I U

P 0 AP→F AP→I AP→U

F AF→P 0 0 0
I AI→P 0 0 0
U AU→P 0 0 AU→U

���������� , (2)

where 0 represents a zero sub-matrix. Note that the non-zero sub-
matrices of A (Equation 2) only appear between processes and files,
processes and sockets, as well as UDSockets and UDSockets, but
not between processes, because the interaction between process
and process does not come with information flow. This is what is
allowed by the Unix system.

Let x be the sender score vector, with x(vi) denoting the node
vi ’s sender score. Similarly, we use y to denote the receiver score
vector. To calculate each node (entity)’s sender and receiver scores,
first, we assign initial scores. We randomly generate the initial
vector x0 and y0 and iteratively update the two vectors by the
following {

xTm+1 = A ∗ yTm
yTm+1 = AT ∗ xTm

, (3)

where T denotes the matrix transpose. According to Equation 3, an
entity vi ’s sender score is the summation over the receiver scores
of the entity to which vi sends information to. The intuition is that
if an entity sends information to a large number entities of high
receiver scores, this entity is an important information sender, and
it should have a high sender score. Similarly, an entity should have
a high receiver score if it receives information from many entities
of high sender scores. As a result, an entity vi ’s receiver score is
calculated by accumulating the sender scores of the entities from
which vi receives information.

From Equation 3, we derive{
xTm+1 = (A ∗AT) ∗ xTm−1
yTm+1 = (AT ∗A) ∗ yTm−1

. (4)

In Equation 4, we update the two score vectors independently.
It is easy to see that the learned scores xm and ym depend on the
initial score vector x0 and y0. Different initial score vectors lead to
different learned score values. It is difficult to choose “good” initial
score vector in order to learn the accurate sender and receiver
scores. However, we find an important property in matrix theory,
namely the steady state property of the matrix [9], to eliminate

the effect of x0 and y0 on the result scores. Specifically, let M be
a general square matrix, and π be a general vector. By repeatedly
updating π with

πTm+1 = M ∗ πTm , (5)
there is a possible convergence state such that πm+1 = πm for
sufficiently largem value. In this case, there is only one unique πn
which can reach the convergence state, i.e.,

πTn = M ∗ πTn . (6)
The convergence state has a good property that the converged
vector is only dependent on the matrixM , but independent from
the initial vector value π0. Based on this property, we prefer that
the sender and receiver vectors can reach the convergence state.
Next, we discuss how to ensure the convergence.

To reach the convergence state, the matrixM must satisfy two
conditions: irreducibility and aperiodicity [9]. A graph G is irre-
ducible if and only if for any two nodes vi , vj ∈ V , there exists
at least one path from vi to vj . The period of a node v ∈ V is
the minimum path length from v to v . The graph’s period is the
greatest common divisor of all the node’s period value. A graphG
is aperiodic if and only if it is irreducible and the period of G is 1.

As our system event graphG is not always a strongly connected,
the iteration in Equation (4) may not reach the convergence state.
To ensure convergence, we add a restart matrix R, which is widely
used in random walk on homogeneous graph [21] and bipartite
graph [23]. Typically, R is an N ∗ N matrix whose entries are all
1
N ’s. With R, we get a new transition matrix Ā:

Ā = (1 − c) ∗A + c ∗ R, (7)
where c is a value between 0 and 1. We call c the restart ratio. With
the restart technique, Ā is guaranteed to be an irreducible and
aperiodic matrix. By replacing A with Ā in Equation (4), we are
able to get the converged sender score vector x and receiver score
vector y. We can also control the convergence rate by controlling
the restart rate value. Our experiments show that the convergence
often can be reached within 10 iterations.

Given a pathp = (v1, . . . ,vr+1), based on the sender and receiver
score, the anomaly score is calculated as

Score(p) = 1 − NS(p), (8)
where NS(p) is the regularity score of the path calculated by the
following formula:

NS(p) =
r∏
i=1

x(vi) ∗A(vi ,vi+1) ∗ y(vi+1), (9)

where x and y are the sender and receiver vectors, and A is calcu-
lated by Equation 2. In Equation (9), x(vi) ∗ A(vi ,vi+1) ∗ y(vi+1)
measures the normality of the event (edge) that vi sends informa-
tion tovi+1. Intuitively, any path that involves at least one abnormal
event is assigned a high anomaly score. Consider the example of
the suspicious path (the red path) in Figure 2. As the install.log file
has a low sender score, and it is rarely accessed by the vim process,
the information transition probability between install.log and vim is
low. Therefore, the event sequence is assigned with a high anomaly
score.

For each path p ∈ C, we calculate the anomaly score by Equation
8. However, it is easy to see that longer paths tend to have higher

anomaly scores than the shorter paths. To eliminate the score bias
from the path length, we normalize the anomaly scores so that
the scores of paths of different lengths have the same distribution.
Let T denote the normalization function. We use the Box-Cox
power transformation function [20] as our normalization function.
In particular, let Q(r) denote the set of anomaly scores of r -length
paths before normalization. For each score q ∈ Q(r), we apply

T(q, λ) =
{

qλ−1
λ : λ , 0

logq : λ = 0
(10)

where λ is a normalization parameter. Different λ values yield dif-
ferent transformed distributions. Our goal is to find the optimal λ
value to make the distribution after normalization as close to the
normal distribution as possible (i.e., T(Q, λ) ∼ N (µ,σ 2)).

Next, we discuss how to compute the optimal λ. First, we assume
that such λ exists to make T(Q, λ) ∼ N (µ,σ 2). The density of a
normalized scores is

Prob(T (q, λ)) =
exp(− 1

2σ 2 (T (q, λ) − µ)2)
√

2πσ
. (11)

The profile logarithm likelihood of the normalized distribution
is

L(Q, λ) = −n2 log(
n∑
i=1

(T (qi , λ) − ¯T(q, λ))2
n

) + (λ − 1)
n∑
i=1

logqi ,

(12)
where ¯T(q, λ) = 1

n
∑n
i=1T (qi , λ).

To minimize the margin between the normalized distributions
and a Gaussian distributions, we find a λ that maximizes the log-
likelihood. A possible solution is to take derivatives of L(Q, λ) on
λ, and pick λ that makes ∂L

∂λ = 0. The suspicious path discovery

component returns those paths of top-k normalized anomaly scores
as suspicious paths.

3.5 Suspicious Path Validation

To further validate the discovered suspicious paths, we calculate
the t-value between the two groups of paths: all candidate paths C,
and the set of discovered suspicious paths S. The t-test returns a
confidence score that determines whether the difference between
the two sets of paths is significant. If the confidence score is greater
than 0.9 with p − value smaller than 0.05, all paths in S are con-
sidered as abnormal paths that are relevant to intrusion attacks.
Otherwise, we treat those paths as normal and do not raise alerts.

The suspicious path validation component prevents GID from
sending false alarms when there is no attack at all.

3.6 Complexity Analysis

In this section, we discuss the complexity of GID. In the candidate
path search component, we execute BFS for each vertex. Thus, the
complexity isO(|V |(|V |+ |E |)), where |V | and |E | denote the number
of vertices and edges in the graph G. In the suspicious path discov-

ery component, calculating the sender and receiver scores using
Equation 3 takes O(|E |t) time, where t is the number of iterations
needed for convergence. In practice, the graph is typically sparse,
and so the number of edges is of the same order as the number of
vertices, N . Therefore, overall the complexity of GID is is O(N 2).

4 EXPERIMENTS

4.1 Experiment Setup

Dataset. We use a real-world system monitoring dataset in our
experiments. The data was collected from an enterprise network
composed of 33 UNIX machines, in a time span of three consecu-
tive days (i.e., 72 hours). The sheer size of the data set is around
157 Gigabytes. We consider four different types of system entities:
(1) files, (2) processes, (3) Unix domain sockets (UDSockets), and (4)
Internet sockets (INETSockets). Each type of entities is associated
with a set of attributes and a unique identifier. Two types of events
(i.e., interactions between the system entities) are considered in this
paper: (1) file accessed by the processes; and (2) communication
between processes. According to the design of modern operating
systems, sockets function as the proxy for different processes to
communicate. Typically, two processes that execute on the same
host communicate with each other via UDSockets, while processes
on different hosts communicate with each other by INETSockets.
Thus, on a single host, the interactions exist between the following
types of entities: (1) processes and files, (2) processes and sockets
(both UDSockets and INETSockets), and (3) UDSockets and UDSock-
ets. In total, there are around 440 million system events. These
events are related to 410, 166 processes, 1, 797, 501 files, 185, 076
UDSockets and 18, 391 INETSockets.
Testbed and Parameters. We implement our algorithm in Java
and run it on a PC with a 2.5GHz CPU and 8GB RAM. We set the
time window size as one hour, namely, we are interested in catch-
ing intrusions which occur within an hour. We use the tumbling

window model to process the stream data for simplicity. By default,
we set ℓ = 5. Various k values are used in order to thoroughly
evaluate the detection accuracy. Regarding the restart ratio c , the
detection accuracy reaches a plateau as c grows from 0.5 to 0.9,
which indicates that GID is insensitive to the choice of c [22]. In
the experiment, we set c = 0.6.

Based on the default setting, for each one-hour time window,
GID returns the most suspicious event sequences whose lengths
are no larger than 5.
Attack Description. There are 10 different types of attacks with
various lengths from 3 to 5. For each type of attacks, we tried 10 at-
tack scenarios at different time slots throughout the data collection
period, which results in total 300 event sequences that correspond
to intrusion attacks into the data. All the 10 types of attacks exploit
event sequences to transmit sensitive information to an unautho-
rized party [7, 17]. Due to the space limits, here we only list the
three major types of attacks.

• Type 1. This attack targets at the /selinux/mls file, which
defines the MLS (Multi-Level Security) classification of files
within the host. In general, the /selinux/mls file should be
kept secret to all users except for the security administrator,
as it exposes the security rules of a computer system and
enables the attackers to find potential vulnerabilities. By the
intrusion attack, the attacker first exploits the ssh process to
access /selinux/mls file. If the file access is successful, the file
content is sent to an external host (i.e., the attacker).

• Type 2. This attack targets at the /etc/passwd file, which
stores the password digest of all users as well as the user
group information. First, the attacker tries to access the

/etc/passwd file by the gvfs process, which enables easy ac-
cess from a remote host via FTP. Then the attacker tries to
send the file via an INETSocket.

• Type 3. In this attack, the remote intruder employs the bash
process to scan a sensitive file /var/log/apt/history.log. This
file stores detailed installation messages. The attackers are
interested in it as they can intrude the host by exploiting
the vulnerabilities of the installed software. The sensitive
information is leaked via an INETSocket.

Type 1 and 2 attacks are the essential initial intrusion steps
committed by the Snowden attack, while Type 3 attacks correspond
to the botnet attackwhere the zombie computer gathers and delivers
the unauthorized information to a command and control (C&C)
server.
Baseline. We compare our algorithm with a number of state-of-
the-art algorithms and the variations of GID. We briefly introduce
these baseline approaches:

• OutRank [16]: This approach leverages graph-based approach
to detect anomalies from a set of objects. The transition
probability is defined as the similarity between a pair of ob-
jects. The values in the dominant eigenvector are used to
determine the anomaly degree of each object. This approach
suffers high computational overhead due to the similarity
computation of all the pairs.

• NGRAM [3]: This method has been widely studied for the
identification of attacks and malicious software. This method
builds the profiles of normal system behaviors, and labels
those events in the testing data that do not appear in the
normal profiles as abnormal ones. In our experiments, we
use the first 4 hours monitoring data as the training set.

• iBOAT [6]: This method has shown its effectiveness in sus-
picious trajectory discovery in GPS traces. It defines the
abnormal events as those whose corresponding paths have
low confidence score in the dataset. In the experiments, we
set the threshold value to be 0.5, which is already the lowest
confidence we can set to get the largest number of attacks
detected.

• PAGE: This approach exploits the famous PageRank [21]
algorithm to compute the entity score and calculates the
anomaly score for single events based on the entity scores. In
this approach, the direction of information flow is ignored.
Also, instead of assigning both the sender and receiver score
to any entity as in GID, this approach only calculates a single
score for each entity based on the steady state distribution of
theMarkov chain process. An event is reported as “abnormal”
if its anomaly score reaches the threshold.

• GID -UNNORMAL In this approach, we intentionally avoid
the normalization of the anomaly scores of paths with differ-
ent length. We compare GID -UNNORMAL to demonstrate
the effectiveness of the normalization in improving the de-
tection accuracy.

Evaluation Metrics.We compare GID with the baselines in terms
of detection accuracy and time performance.

• Accuracy: The accuracy is measured using true positive rate

(TPR) and false positive rate (FPR). Intuitively, the TPR defines
the fraction of intrusion attacks that are detected during the

test. FPR, on the other hand, describes the fraction of normal
event sequences that trigger an alert in the test. We plot
the ROC curve based on the TPR and FPR obtained under
various k values.

• Time: We measure the time consumed to detect abnormal
event sequences. In order to deploy GID into enterprise sys-
tems, we expect a low detection latency.

• Memory usage: We quantify the memory consumed by GID
to simultaneously monitor and detect intrusion attacks for all
the 33 machines. This is an important performance indicator
in real applications.

Experiment Settings. We evaluate GID in the following settings:
(1) Static:We fetch the events in the monitoring data collected

in the 10-th hour, and execute the detection algorithms on these
events offline. In specific, the monitoring data is fed to the detection
algorithms all at once. All the required data is stored in memory.
There exist in total 8million system events.We launched 12 attacks
during the 10-th hour. We aim at evaluating the performance and
parameter sensitivity of GID before testing it on the streaming data.

(2) Streaming: The monitoring data is delivered to GID in a
streaming fashion, i.e, one system event is processed at a time.
GID updates the graph (in particular, the edge weights) and the
sender and receiver scores of all the entities according to the in-
coming events. A snapshot of the entity scores is retained every
hour for evaluation. We use this setting to simulate the application
of GID in enterprise security system.

4.2 Static Evaluation

Detection Accuracy. We compare the detection accuracy of GID
with the baseline approaches. To quantify the detection accuracy,
we choose different k values and compare the detected alerts with
the ground truth event sequences related to attacks. Based on the
result, we plot the ROC curves in Figure 3. The result demonstrates
the effectiveness and accuracy of GID in detecting the attacks.
The accuracy provided by GID is much better than the baselines.
Specifically, among altogether 12 attacks, only two of them exploit
system entities that are not included in the normal profile. Thus
NGRAM can only identify these two attacks. OutRank fails to detect
the majority of real attacks, such as Type 2 and 3. This is because
the involved system entities, i.e., gvfs and history.log, commonly
fall inside system events. iBOAT introduces a large number of false
positives, as the confidence scores between certain processes and
files follow a polarized distribution. GID -UNNORMAL introduces
a bias for long sequences, as they typically have higher anomaly
scores. However, as the number of long sequences is limited, the
accuracy is still acceptable. PAGE does not consider the information
flow direction and only targets on single events. Thus, even though
history.log is rarely read, it fails to detect the Type 3 attack, as the
file is often updated. Moreover, it triggers a large amount of false
positive alerts.

In practice, it is unrealistic to expect users to provide an accurate
estimation of the length ℓ of real attack sequences. Therefore we
measure the impact of the choice of ℓ on the detection accuracy.
As the length of ground truth event sequences is at most 5, we
vary ℓ from 5 to 10, and report the ROC curves in Figure 4. We
observe that even though a larger ℓ tends to hamper the accuracy,
the effect is quite negligible especially when ℓ ≥ 8. This is because

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

GID

OutRank

NGRAM

iBOAT

PAGE

GID-UNNORMAL

Figure 3: ROC curve over

static data

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

l=5

l=6

l=7

l=8

l=9

l=10

Figure 4: ROC curve w.r.t.
various ℓ

the number of long event sequences is quite small. For example, the
number of sequences of length l = 5 is 13, 675; while that for ℓ = 6
is only 625. Therefore, given the limited number of long sequences,
the detection accuracy of GID is not very sensitive to the choice of
ℓ. This makes our approach more plausible in practical scenarios.
Time Performance. We compare the time performance of GID
with the baseline approaches. The result is displayed in Figure 5. We
omit the time performance of PAGE and GID-UNNORMAL as they
are very close to that of GID.GID is significantly more efficient than
OutRank. The main complexity of OutRank comes from computing
the pairwise similarity between all the event sequences. Among
the baseline approaches, NGRAM is the most efficient as the normal
profile is pre-computed and requires no update. It only needs to
find the event sequences and check the existence in the normal
profile. However, it still takes longer time than GID due to the large
size of the normal profile. iBOAT takes more time than GID due to
the confidence computation.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

T
im

e
 (

S
e
c
o
n
d
)

GID
NGRAM

iBOAT
OutRank

Figure 5: Time performance over static data

4.3 Streaming Evaluation

Detection Accuracy. The frequency at which snapshots of the en-
tity scores are updated can have a dramatic impact on the detection
accuracy. LetW denote the period to update the snapshot. Intu-
itively, a smallerW leads to more dynamic updates in the normal
profile in locating anomalies from incoming event sequences. In
Figure 6, we evaluate the detection accuracy of GID with regard
to variousW . It is obvious that GID yields the best accuracy when
the update periodW is small. But it is also worth noting that when

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

W=12min

W=30min

W=1hr

W=2hr

Figure 6: ROC curve w.r.t. update period

W is smaller than 1 hour, the benefit of decreasingW can be trivial.
Given the fact that smallerW induces more overhead in updating
the snapshot, we figure out that GID reaches the best balance be-
tween detection accuracy and update overhead whenW = 1hr .
Therefore, in the experiment, we update the snapshot every 1 hour.

Memory Usage. To show the compactness of the graph model,
we measure the size of the constructed graph.

Process File INETSocket UDSocket Edge
Avg. 117.3 191.36 0.93 41.42 1668.4
Max 1468 23290 130 6735 58555

(a) Avg/max. number of system entities and edges

2

3

4

5

6

7

 6 12 18 24 30 36 42 48 54 60 66 72

N
u
m

b
e
r

(l
o
g
 s

c
a
le

)

Hour

number of events
number of nodes
number of edges

 0

 1

 2

 3

 4

 5

 6 12 18 24 30 36 42 48 54 60 66 72

M
e
m

o
ry

 S
p
a
c
e
 (

G
B

)

Hour

Monitoring Data
GID

(b) Graph size vs. number of events (c) Memory usage comparison of
GID and the monitoring data

Figure 7: Graph compactness

In Figure 7 (a), we report the size of our system event graph in
terms of the number of system entities and edges. Specifically, we
construct a graph per host per hour. Thus based on the monitoring
data for 33 machines and 3 days, there are 72*33 = 2, 376 graphs. On
average, each graph contains around 351 nodes with four different
types and less than 1.7K edges. Even for the worst case, the graph
is still within the size of 60K edges. In Figure 7 (b), we show the
average size of the graphs for each hour in a 72-hour time window.
The number of nodes and edges are measured by averaging the size
of the 33 graphs (for 33 hosts) in one hour. The results show that
the graph can indeed reduce the space dramatically. One interesting
observation is that the graph reaches its largest size at the 10-th,
34-th and 58-th hour. These 3 peak hours correspond to the 10am of
Day 1, Day 2 and Day 3 respectively. Normally 10am is the busiest
time of system logging as it is when most employees arrive at office.
We also directly compare the memory space consumed by GID

and the size of the monitoring data in each snapshot. The result is
displayed in Figure 7 (c). The memory usage of GID is around one
tenth of that demanded by the monitoring data. It demonstrates
the graph model compactly compresses the massive heterogeneous
monitoring data. Therefore, GID maintains the scalability to be
deployed for real-world enterprise application.

 0

 50

 100

 150

 200

 250

 300

 350

 6 12 18 24 30 36 42 48 54 60 66 72

T
im

e
 (

S
e
c
o
n
d
)

Hour
 0

 20

 40

 60

 80

 100

 120

 140

 160

T
im

e
 (

u
s
)

Graph Update
Candidate Search

Entity Score Update

(a) Snapshot update time (b) Average snapshot update
time per event

Figure 8: Time performance over streaming data

Time Performance. When executing GID on the streaming
data, the main computational bottleneck stems from the snapshot
update. The candidate path searching and anomaly score calculation
can be easily performed on the fly. However, the periodical snapshot
update can be time consuming, especially when the events arrive at
a higher velocity.We show the time performance of snapshot update
in Figure 8 (a). In most cases, the snapshot update is efficient (within
2 minutes). However, at the peak hours when the incoming events
explode, the update can take up to 8 minutes. Considering that the
snapshot only needs to be updated every hour, the time overhead
of graph update is affordable. We further analyze the update time
for each incoming event. Recall that each incoming event triggers
four operations: updating the graph, re-calculating the entity score,
searching for candidate paths, and anomaly score calculation. Given
the sender and receiver scores, it is extremely efficient to calculate
the anomaly score for each candidate path. Thus, we only measure
the time consumed by the first three operations and report the result
in Figure 8 (b). We observe that for each event, the time overhead is
negligible. On average, the operations triggered by each event only
takes 0.28 millisecond. Therefore, GID can be scaled up to 4, 000
events per second.

5 RELATEDWORK

5.1 Anomaly Detection

Existing methods for intrusion detection can roughly be categorized
into two classes, namely anomaly detection and misuse detection
[11]. Anomaly detection approaches define and characterize nor-
mal/abnormal behaviors of the system, while the misuse detection
approaches monitor explicit patterns, with the intrusion patterns
known in advance. In this paper, we focus on anomaly detection
methods. Based on the data representation, we put the existing
work of anomaly detection into the following two categories.

Event-based anomaly detection monitors and analyzes the pro-
cess events of a computing system. Traditionally, system calls serve
as a good basis for event-based analysis, as short sequences of sys-
tem calls are a good discriminator for several types of intrusions
[3]. [3] builds the profile of k-grams from normal system call traces.

An alert is thrown if a new system call trace is significantly differ-
ent from the normal profile. [18] extends this work by taking the
system call argument values into consideration. [15] considers two
events with high posterior probability in the normal training data
to be a good predictive pattern of normal status. In the detection
phase, any violation of such pattern is recognized to be abnormal.
In all these methods, a purely normal and exhaustive set of training
data is essential for constructing a robust normal profile, which
substantially degrades the practicability.

In contrast, graph-based anomaly detectionmodels the informa-
tion flow in a computer system using directed graphs, and extracts
abnormal substructures from it. Based on minimum description

length (MDL) principle, [8, 19] discover those small but rarely-
happened substructures in the procedure of compressing the graph.
However, the MDL principle does not fit the highly dynamic com-
puter system graph. To overcome this problem, [23] explores the
anomalies based on the community structure in an evolutionary
graph. Because the concentration is limited to the graph struc-
ture, a wealth of information to describe an attack, including event
timestamps and entity attributes, is disregarded. As a result, the
discovered anomalies may not necessarily relate to a cyber attack.
[5] defines various notions of the rarity in order to discover novel
links from a graph. However, even though efficient, the straightfor-
ward rarity measurement may not be able to catch sophisticated
cyber attacks.
5.2 Similarity Search in Graphs

Graph similarity search plays a key role in information retrieval
and recommendation systems. [21] initiates the research on simi-
larity search in graphs by proposing a random web surfer model to
evaluate the importance of each webpage. If a random surfer stops
at a webpage with high probability after a sufficiently large time,
this page is of great importance. To avoid the rank sinks such as
circles with no out-edges, a restart matrix is taken into considera-
tion to model the behavior that the surfer periodically gets bored
and jumps to a random page. Following this work, similarity search
strategies have been successfully applied to different settings such
as personalized recommendation and information retrieval [4, 10].
But most of them focus on homogeneous graphs. Limited papers
make a bold attempt to heterogeneous graphs. Among them, [23]
utilizes graph partition and relevance search to detect anomalies in
undirected bipartite graph. [1] exploits the cyclic structure to rank
nodes in cyclic multipartite graphs. PathSim [24] extracts top-k
similar entities to an input entity from a heterogeneous network.
The similarity between two entities is measured based on the Jac-
card similarity of paths that are consistent with the meta-path. A
big difference between GID and these methods is that the search
criteria of GID is the anomaly score that reflects the typical system
behavior in terms of information flow, but not similarities.

6 CONCLUSION

In this paper, we investigate the problem of detecting intrusions,
especially suspicious event sequences, in enterprise systems. Dif-
ferent from traditional methods that focus on detecting single enti-
ties/events, we propose GID, a graph-based method to capture the
interaction behavior among different entities and identify abnormal
event sequences. An event sequence is evaluated to be suspicious if

any entity functions differently from its role. In this way, even the
abnormal activities only involve ordinary entities, we are still able
to catch such anomalies. We implement and deploy our approach
to a real enterprise security system, and evaluate the proposed al-
gorithm in extensive experiments. The experiment results convince
us of the effectiveness and efficiency of our approach.

REFERENCES

[1] Niels Becker. 2013. Ranking on multipartite graphs. Diploma Thesis. Ludwig
Maximilian University of Munich, Munich.

[2] Richard Bellman. 1961. Adaptive control processes: a guided tour. Princeton
University Press.

[3] Marco Caselli, Emmanuele Zambon, and Frank Kargl. 2015. Sequence-aware
intrusion detection in industrial control systems. In Proceedings of the Workshop

on Cyber-Physical System Security. 13–24.
[4] Soumen Chakrabarti. 2007. Dynamic personalized pagerank in entity-relation

graphs. In Proceedings of the International Conference on World Wide Web.
[5] Hans Chalupsky et al. 2003. Unsupervised link discovery in multi-relational data

via rarity analysis. In Proceedings of the International Conference on Data Mining

(ICDM). 171–178.
[6] Chao Chen, Daqing Zhang, Pablo Samuel Castro, Nan Li, Lin Sun, Shijian Li,

and Zonghui Wang. 2013. iBOAT: Isolation-based online anomalous trajectory
detection. IEEE Transactions on Intelligent Transportation Systems (2013).

[7] Abhishek Das, Gokhan Memik, Joseph Zambreno, and Alok Choudhary. 2010.
Detecting/preventing information leakage on the memory bus due to malicious
hardware. In Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 861–866.

[8] William Eberle, Jeffrey Graves, and Lawrence Holder. 2010. Insider threat de-
tection using a graph-based approach. Journal of Applied Security Research 6, 1
(2010), 32–81.

[9] JP Jarvis and Douglas R Shier. 1999. Graph-theoretic analysis of finite Markov
chains. Applied Mathematical Modeling: A Multidisciplinary Approach (1999).

[10] Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In Proceed-

ings of the International Conference on World Wide Web (WWW). 271–279.
[11] Anita K Jones and Robert S Sielken. 2000. Computer system intrusion detection:

a survey. Computer Science Technical Report (2000), 1–25.
[12] V Jyothsna, VV Rama Prasad, and K Munivara Prasad. 2011. A review of anomaly

based intrusion detection systems. International Journal of Computer Applications

28, 7 (2011), 26–35.
[13] Ponemon L. 2014. Cost of data breach study: global analysis. Poneomon Institute

Sponsored by Symantec (2014).
[14] Shih-Wei Lin, Kuo-Ching Ying, Chou-Yuan Lee, and Zne-Jung Lee. 2012. An

intelligent algorithm with feature selection and decision rules applied to anomaly
intrusion detection. Applied Soft Computing 12, 10 (2012), 3285–3290.

[15] Matthew VMahoney, Philip K Chan, and Muhammad H Arshad. 2003. A machine

learning approach to anomaly detection. Technical Report. Florida Institute of

Technology.
[16] HDK Moonesignhe and Pang-Ning Tan. 2006. Outlier detection using random

walks. In International Conference on Tools with Artificial Intelligence (ICTAI).
[17] Martin Mulazzani, Sebastian Schrittwieser, Manuel Leithner, Markus Huber, and

Edgar R Weippl. 2011. Dark clouds on the horizon: using clouds storage as attack
vector and online slack space.. In USENIX Security Symposium. San Francisco,
CA, USA, 65–76.

[18] Darren Mutz, Fredrik Valeur, Giovanni Vigna, and Christopher Kruegel. 2006.
Anomalous system call detection. ACM Transactions on Information and System

Security (TISSEC) 9, 1 (2006), 61–93.
[19] Caleb C Noble and Diane J Cook. 2003. Graph-based anomaly detection. In

Proceedings of the ACM International Conference on Knowledge Discovery and

Data Mining (SIGKDD). 631–636.
[20] Jason W Osborne. 2010. Improving your data transformations: applying the

Box-Cox transformation. Practical Assessment, Research & Evaluation 15 (2010).
[21] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank citation ranking: bringing order to the web. Technical Report. Stanford
Digital Library Technologies Project.

[22] Jia-Yu Pan, Hyung-Jeong Yang, Christos Faloutsos, and Pinar Duygulu. 2004. Au-
tomatic multimedia cross-modal correlation discovery. In Proceedings of the ACM

International Conference on Knowledge Discovery and Data Mining (SIGKDD).
[23] Jimeng Sun, Huiming Qu, Deepayan Chakrabarti, and Christos Faloutsos. 2005.

Neighborhood formation and anomaly detection in bipartite graphs. In Proceed-

ings of the International Conference on Data Mining (ICDM). 418–425.
[24] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Pathsim:

meta path-based top-k similarity search in heterogeneous information networks.
In Proceedings of the International Conference on Very Large Databases (VLDB).

	Abstract
	1 Introduction
	2 Preliminaries and Problem Statement
	3 Algorithm
	3.1 Overview
	3.2 Graph Modeling
	3.3 Candidate Path Search
	3.4 Suspicious Path Discovery
	3.5 Suspicious Path Validation
	3.6 Complexity Analysis

	4 Experiments
	4.1 Experiment Setup
	4.2 Static Evaluation
	4.3 Streaming Evaluation

	5 Related Work
	5.1 Anomaly Detection
	5.2 Similarity Search in Graphs

	6 Conclusion
	References

